Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Invest Ophthalmol Vis Sci ; 65(3): 8, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466283

ABSTRACT

Purpose: Contact lens wear induces corneal parainflammation involving increased immune cell numbers after 24 hours' (CD11c+, Lyz2+, γδ-T cells) and six days' (Ly6G+ cells) wear. We investigated the time course of onset and resolution of these responses. Methods: LysMcre or C57BL/6J mice were fitted with a contact lens (four to 48 hours). Contralateral eyes did not wear lenses. After lens removal, Lyz2+, MHC-II+ or Ly6G+ cells were examined by quantitative imaging. RT-qPCR determined cytokine gene expression. Results: Lens wear for 24 hours increased corneal Lyz2+ cells versus contralateral eyes approximately two-fold. Corneas remained free of visible pathology. The Lyz2+ response was not observed after four or 12 hours' wear, nor after 12 hours' wear plus 12 hours' no wear. Lens removal after 24 hours' wear further increased Lyz2+ cells (∼48% after one day), which persisted for four days, returning to baseline by seven days. Lyz2+ cells in contralateral eyes remained at baseline. MHC-II+ cells showed a similar response but without increasing after lens removal. Lens wear for 48 hours showed reduced Lyz2+ cells versus 24 hours' wear with one day discontinuation, correlating with reduced IL-1ß and IL-18 gene expression. Lens wear for 24 hours did not induce Ly6G+ responses six days after removal. Conclusions: Lens-induced corneal parainflammation involving Lyz2+ cells requires 24 hours' wear but persists after lens discontinuation, requiring seven days for reversal. Lens wear for 48 hours may suppress initial Lyz2+ cell and cytokine responses. The significance of parainflammation during and after lens wear remains to be determined.


Subject(s)
Contact Lenses , Lens, Crystalline , Mice , Animals , Mice, Inbred C57BL , Contact Lenses/adverse effects , Cornea , Cytokines/genetics
2.
mSphere ; 8(5): e0035123, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37589460

ABSTRACT

Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.


Subject(s)
Inflammasomes , Pseudomonas aeruginosa , Humans , HeLa Cells , Pseudomonas aeruginosa/physiology , Inflammasomes/metabolism , Epithelial Cells/microbiology , Vacuoles/microbiology
3.
Invest Ophthalmol Vis Sci ; 64(11): 21, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37585189

ABSTRACT

Purpose: Contact lens wear can induce corneal parainflammation involving CD11c+ cell responses (24 hours), γδ T cell responses (24 hours and 6 days), and IL-17-dependent Ly6G+ cell responses (6 days). Topical antibiotics blocked these CD11c+ responses. Because corneal CD11c+ responses to bacteria require transient receptor potential (TRP) ion-channels (TRPA1/TRPV1), we determined if these channels mediate lens-induced corneal parainflammation. Methods: Wild-type mice were fitted with contact lenses for 24 hours or 6 days and compared to lens wearing TRPA1 (-/-) or TRPV1 (-/-) mice or resiniferatoxin (RTX)-treated mice. Contralateral eyes were not fitted with lenses. Corneas were examined for major histocompatibility complex (MHC) class II+, CD45+, γδ T, or TNF-α+ cell responses (24 hours) or Ly6G+ responses (6 days) by quantitative imaging. The quantitative PCR (qPCR) determined cytokine gene expression. Results: Lens-induced increases in MHC class II+ cells after 24 hours were abrogated in TRPV1 (-/-) but not TRPA1 (-/-) mice. Increases in CD45+ cells were unaffected. Increases in γδ T cells after 24 hours of wear were abrogated in TRPA1 (-/-) and TRPV1 (-/-) mice, as were 6 day Ly6G+ cell responses. Contralateral corneas of TRPA1 (-/-) and TRPV1 (-/-) mice showed reduced MHC class II+ and γδ T cells at 24 hours. RTX inhibited lens-induced parainflammatory phenotypes (24 hours and 6 days), blocked lens-induced TNF-α and IL-18 gene expression, TNF-α+ cell infiltration (24 hours), and reduced baseline MHC class II+ cells. Conclusions: TRPA1 and TRPV1 mediate contact lens-induced corneal parainflammation after 24 hours and 6 days of wear and can modulate baseline levels of resident corneal immune cells.


Subject(s)
Contact Lenses , Tumor Necrosis Factor-alpha , Animals , Mice , Cornea/metabolism , Histocompatibility Antigens Class II/metabolism , Ion Channels , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Ocul Surf ; 28: 79-89, 2023 04.
Article in English | MEDLINE | ID: mdl-36758675

ABSTRACT

PURPOSE: Previously, using a murine model, we reported that contact lens (CL) wear induced corneal parainflammation involving CD11c+ cells after 24 h and Ly6G+ cells (neutrophils) after 5-6 days. Here, we investigated the role of IL-17 and γδ T cells in the CL-induced neutrophil response. METHODS: CL-wearing C57BL/6 wild-type (WT) mice were compared to lens-wearing IL-17A/F single or double gene knock-out mice, or mice treated with UC7-13D5 monoclonal antibody to functionally deplete γδ T cells. Contralateral eyes served as no lens wear controls. Corneal Ly6G+ and γδ T cell responses were quantified as was expression of genes encoding pro-inflammatory cytokines IL-17A/F, IL-ß, IL-18 and expression of IL-17A/F protein. RESULTS: After 6 days lens wear, WT corneas showed Ly6G+ cell infiltration while remaining free of visible pathology. In contrast, lens-wearing corneas of IL-17AF (-/-), IL-17A (-/-) mice and γδ T cell-depleted mice showed little or no Ly6G+ cell infiltration. No Ly6G+ cell infiltration was detected in contralateral eye controls. Lens-wearing WT corneas also showed a significant increase in γδ T cells after 24 h that was maintained after 6 days of wear, and significantly increased cytokine gene expression after 6 days versus contralateral controls: IL-18 & IL-17A (∼3.9 fold) and IL-23 (∼6.5-fold). Increased IL-17A protein (∼4-fold) was detected after 6 days lens wear. γδ T cell-depletion abrogated these lens-induced changes in cytokine gene and protein expression. CONCLUSION: Together, these data show that IL-17A and γδ T cells are required for Ly6G+ cell (neutrophil) infiltration of the cornea during contact lens-induced parainflammation.


Subject(s)
Contact Lenses , Interleukin-17 , Mice , Animals , Interleukin-17/genetics , Interleukin-17/metabolism , Interleukin-18/metabolism , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Cornea/metabolism , Cytokines/metabolism , Mice, Knockout
5.
bioRxiv ; 2023 Apr 28.
Article in English | MEDLINE | ID: mdl-36824932

ABSTRACT

Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed this involves multiple roles played by the type three-secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with activation of NF-κB as measured by p65 relocalization and TNFα transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the TSSS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially-driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa.

6.
mBio ; 13(6): e0274222, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36374039

ABSTRACT

Within epithelial cells, Pseudomonas aeruginosa depends on its type III secretion system (T3SS) to escape vacuoles and replicate rapidly in the cytosol. Previously, it was assumed that intracellular subpopulations remaining T3SS-negative (and therefore in vacuoles) were destined for degradation in lysosomes, supported by data showing vacuole acidification. Here, we report in both corneal and bronchial human epithelial cells that vacuole-associated bacteria can persist, sometimes in the same cells as cytosolic bacteria. Using a combination of phase-contrast, confocal, and correlative light-electron microscopy (CLEM), we also found they can demonstrate biofilm-associated markers: cdrA and cyclic-di-GMP (c-di-GMP). Vacuolar-associated bacteria, but not their cytosolic counterparts, tolerated the cell-permeable antibiotic ofloxacin. Surprisingly, use of mutants showed that both persistence in vacuoles and ofloxacin tolerance were independent of the biofilm-associated protein CdrA or exopolysaccharides (Psl, Pel, alginate). A T3SS mutant (ΔexsA) unable to escape vacuoles phenocopied vacuole-associated subpopulations in wild-type PAO1-infected cells, with results revealing that epithelial cell death depended upon bacterial viability. Intravital confocal imaging of infected mouse corneas confirmed that P. aeruginosa formed similar intracellular subpopulations within epithelial cells in vivo. Together, these results show that P. aeruginosa differs from other pathogens by diversifying intracellularly into vacuolar and cytosolic subpopulations that both contribute to pathogenesis. Their different gene expression and behavior (e.g., rapid replication versus slow replication/persistence) suggest cooperation favoring both short- and long-term interests and another potential pathway to treatment failure. How this intracellular diversification relates to previously described "acute versus chronic" virulence gene-expression phenotypes of P. aeruginosa remains to be determined. IMPORTANCE Pseudomonas aeruginosa can cause sight- and life-threatening opportunistic infections, and its evolving antibiotic resistance is a growing concern. Most P. aeruginosa strains can invade host cells, presenting a challenge to therapies that do not penetrate host cell membranes. Previously, we showed that the P. aeruginosa type III secretion system (T3SS) plays a pivotal role in survival within epithelial cells, allowing escape from vacuoles, rapid replication in the cytoplasm, and suppression of host cell death. Here, we report the discovery of a novel T3SS-negative subpopulation of intracellular P. aeruginosa within epithelial cells that persist in vacuoles rather than the cytoplasm and that tolerate a cell-permeable antibiotic (ofloxacin) that is able to kill cytosolic bacteria. Classical biofilm-associated markers, although demonstrated by this subpopulation, are not required for vacuolar persistence or antibiotic tolerance. These findings advance our understanding of how P. aeruginosa hijacks host cells, showing that it diversifies into multiple populations with T3SS-negative members enabling persistence while rapid replication is accomplished by more vulnerable T3SS-positive siblings. Intracellular P. aeruginosa persisting and tolerating antibiotics independently of the T3SS or biofilm-associated factors could present additional challenges to development of more effective therapeutics.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Animals , Mice , Humans , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/genetics , Type III Secretion Systems/metabolism , Bacteria/metabolism , Ofloxacin/metabolism , Anti-Bacterial Agents/metabolism , Gene Expression Regulation, Bacterial
7.
Sci Rep ; 12(1): 10655, 2022 06 23.
Article in English | MEDLINE | ID: mdl-35739166

ABSTRACT

Previously we reported contact lens-induced CD11c+ cell responses in healthy mouse corneas, a phenomenon that also occurs in humans. To test involvement of ocular-associated bacteria, the impact of topical antibiotics on corneal CD11c+ cell populations during 24 h of lens wear was examined. Corneas were treated with gentamicin and ofloxacin (0.3%) or gentamicin alone, some also treated prior to lens wear (24 h). Contralateral PBS-treated eyes served as controls. CD11c-YFP (Yellow Fluorescent Protein) mice allowed CD11c+ cell visualization. Viable bacteria, on the ocular surface or contact lens, were labeled using FISH (16S rRNA-targeted probe) or click-chemistry (alkDala). Antibiotic treatment reduced baseline CD11c+ cell numbers without lens wear and suppressed CD11c+ cell responses to lens wear if corneas were both pretreated and treated during wear. Few bacteria colonized corneas or lenses under any circumstances. Conjunctival commensals were significantly reduced by antibiotics with or without lens wear, but minimally impacted by lens wear alone. Deliberate inoculation with conjunctival commensals triggered CD11c+ cell responses irrespective of antibiotic pretreatment. These results suggest that while lens wear does not necessarily increase quantifiable numbers of conjunctival commensals, those neutralized by antibiotics play a role in lens-associated CD11c+ cell responses and maintaining baseline CD11c+ cell populations.


Subject(s)
Anti-Bacterial Agents , Contact Lenses , Animals , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria , CD11c Antigen/metabolism , Cell Count , Cornea/metabolism , Gentamicins/metabolism , Gentamicins/pharmacology , Mice , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
8.
PLoS Pathog ; 18(2): e1010306, 2022 02.
Article in English | MEDLINE | ID: mdl-35130333

ABSTRACT

The Pseudomonas aeruginosa toxin ExoS, secreted by the type III secretion system (T3SS), supports intracellular persistence via its ADP-ribosyltransferase (ADPr) activity. For epithelial cells, this involves inhibiting vacuole acidification, promoting vacuolar escape, countering autophagy, and niche construction in the cytoplasm and within plasma membrane blebs. Paradoxically, ExoS and other P. aeruginosa T3SS effectors can also have antiphagocytic and cytotoxic activities. Here, we sought to reconcile these apparently contradictory activities of ExoS by studying the relationships between intracellular persistence and host epithelial cell death. Methods involved quantitative imaging and the use of antibiotics that vary in host cell membrane permeability to selectively kill intracellular and extracellular populations after invasion. Results showed that intracellular P. aeruginosa mutants lacking T3SS effector toxins could kill (permeabilize) cells when extracellular bacteria were eliminated. Surprisingly, wild-type strain PAO1 (encoding ExoS, ExoT and ExoY) caused cell death more slowly, the time extended from 5.2 to 9.5 h for corneal epithelial cells and from 10.2 to 13.0 h for HeLa cells. Use of specific mutants/complementation and controls for initial invasion showed that ExoS ADPr activity delayed cell death. Triggering T3SS expression only after bacteria invaded cells using rhamnose-induction in T3SS mutants rescued the ExoS-dependent intracellular phenotype, showing that injected effectors from extracellular bacteria were not required. The ADPr activity of ExoS was further found to support internalization by countering the antiphagocytic activity of both the ExoS and ExoT RhoGAP domains. Together, these results show two additional roles for ExoS ADPr activity in supporting the intracellular lifestyle of P. aeruginosa; suppression of host cell death to preserve a replicative niche and inhibition of T3SS effector antiphagocytic activities to allow invasion. These findings add to the growing body of evidence that ExoS-encoding (invasive) P. aeruginosa strains can be facultative intracellular pathogens, and that intracellularly secreted T3SS effectors contribute to pathogenesis.


Subject(s)
ADP Ribose Transferases/metabolism , Cell Membrane Permeability , Exotoxins/metabolism , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Cell Death , Epithelial Cells/metabolism , Epithelial Cells/microbiology , GTPase-Activating Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions , Humans , Mutation , Pseudomonas aeruginosa/drug effects , Type III Secretion Systems/metabolism , Vacuoles/metabolism
9.
FASEB J ; 35(10): e21899, 2021 10.
Article in English | MEDLINE | ID: mdl-34569661

ABSTRACT

The cornea of the eye differs from other mucosal surfaces in that it lacks a viable bacterial microbiome and by its unusually high density of sensory nerve endings. Here, we explored the role of corneal nerves in preventing bacterial adhesion. Pharmacological and genetic methods were used to inhibit the function of corneal sensory nerves or their associated transient receptor potential cation channels TRPA1 and TRPV1. Impacts on bacterial adhesion, resident immune cells, and epithelial integrity were examined using fluorescent labeling and quantitative confocal imaging. TRPA1/TRPV1 double gene-knockout mice were more susceptible to adhesion of environmental bacteria and to that of deliberately-inoculated Pseudomonas aeruginosa. Supporting the involvement of TRPA1/TRPV1-expressing corneal nerves, P. aeruginosa adhesion was also promoted by treatment with bupivacaine, or ablation of TRPA1/TRPV1-expressing nerves using RTX. Moreover, TRPA1/TRPV1-dependent defense was abolished by enucleation which severs corneal nerves. High-resolution imaging showed normal corneal ultrastructure and surface-labeling by wheat-germ agglutinin for TRPA1/TRPV1 knockout murine corneas, and intact barrier function by absence of fluorescein staining. P. aeruginosa adhering to corneas after perturbation of nerve or TRPA1/TRPV1 function failed to penetrate the surface. Single gene-knockout mice showed roles for both TRPA1 and TRPV1, with TRPA1-/- more susceptible to P. aeruginosa adhesion while TRPV1-/- corneas instead accumulated environmental bacteria. Corneal CD45+/CD11c+ cell responses to P. aeruginosa challenge, previously shown to counter bacterial adhesion, also depended on TRPA1/TRPV1 and sensory nerves. Together, these results demonstrate roles for corneal nerves and TRPA1/TRPV1 in corneal resistance to bacterial adhesion in vivo and suggest that the mechanisms involve resident immune cell populations.


Subject(s)
Bacterial Adhesion , Cornea , Pseudomonas aeruginosa/metabolism , TRPA1 Cation Channel/metabolism , TRPV Cation Channels/metabolism , Animals , Cornea/innervation , Cornea/metabolism , Cornea/microbiology , Female , Male , Mice , Mice, Knockout , TRPA1 Cation Channel/genetics , TRPV Cation Channels/genetics
10.
Ocul Surf ; 22: 94-102, 2021 10.
Article in English | MEDLINE | ID: mdl-34332149

ABSTRACT

PURPOSE: Previously, we showed that tear fluid protects corneal epithelial cells against Pseudomonas aeruginosa without suppressing bacterial viability. Here, we studied how tear fluid affects bacterial gene expression. METHODS: RNA-sequencing was used to study the P. aeruginosa transcriptome after tear fluid exposure (5 h, 37 oC). Outcomes were further investigated by biochemical and physiological perturbations to tear fluid and tear-like fluid (TLF) and assessment of bacterial viability following tear/TLF pretreatment and antibiotic exposure. RESULTS: Tear fluid deregulated ~180 P. aeruginosa genes ≥8 fold versus PBS including downregulating lasI, rhlI, qscR (quorum sensing/virulence), oprH, phoP, phoQ (antimicrobial resistance) and arnBCADTEF (polymyxin B resistance). Upregulated genes included algF (biofilm formation) and hemO (iron acquisition). qPCR confirmed tear down-regulation of oprH, phoP and phoQ. Tear fluid pre-treatment increased P. aeruginosa resistance to meropenem ~5-fold (4 µg/ml), but enhanced polymyxin B susceptibility ~180-fold (1 µg/ml), the latter activity reduced by dilution in PBS. Media containing a subset of tear components (TLF) also sensitized bacteria to polymyxin B, but only ~22.5-fold, correlating with TLF/tear fluid Ca2+ and Mg2+ concentrations. Accordingly, phoQ mutants were not sensitized by TLF or tear fluid. Superior activity of tear fluid versus TLF against wild-type P. aeruginosa was heat resistant but proteinase K sensitive. CONCLUSION: P. aeruginosa responds to human tear fluid by upregulating genes associated with bacterial survival and adaptation. Meanwhile, tear fluid down-regulates multiple virulence-associated genes. Tears also utilize divalent cations and heat resistant/proteinase K sensitive component(s) to enhance P. aeruginosa sensitivity to polymyxin B.


Subject(s)
Pseudomonas aeruginosa , Transcriptome , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Humans , Pseudomonas aeruginosa/genetics
11.
mBio ; 12(3): e0111621, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34044593

ABSTRACT

Since early 2020, the world has witnessed the unprecedented accomplishments of the scientific community in the fight against the coronavirus disease 2019 (COVID-19) pandemic. In the meantime, we also learned valuable lessons and recognized the challenges that hindered our successes. In this article, we synthesize the ideas discussed at the ASM Virtual Symposium: Microbial Science Research in the Post-COVID Environment on 10 November 2020. We propose three new approaches that microbiology researchers can embrace to overcome these challenges. Moreover, we suggest broad systematic changes to focus on social impacts, teamwork, and diversity, equity, and inclusion. We believe these values are needed to prepare the microbial science research community for future opportunities and challenges.


Subject(s)
Biomedical Research/methods , COVID-19/therapy , Primary Prevention/methods , Humans , SARS-CoV-2
12.
PLoS One ; 15(5): e0234013, 2020.
Article in English | MEDLINE | ID: mdl-32470039

ABSTRACT

The healthy cornea is remarkably resistant to infection, quickly clearing deliberately inoculated bacteria such as Pseudomonas aeruginosa and Staphylococcus aureus. Contrasting with the adjacent conjunctiva and other body surfaces, it also lacks a resident viable bacterial microbiome. Corneal resistance to microbes depends on intrinsic defenses involving tear fluid and the corneal epithelium. Dry eye, an ocular surface disease associated with discomfort and inflammation, can alter tear fluid composition and volume, and impact epithelial integrity. We previously showed that experimentally-induced dry eye (EDE) in mice does not increase corneal susceptibility to P. aeruginosa infection. Here, we explored if EDE alters corneal resistance to bacterial colonization. EDE was established in mice using scopolamine injections and dehumidified air-flow, and verified by phenol-red thread testing after 5 and 10 days. As expected, EDE corneas showed increased fluorescein staining versus controls consistent with compromised epithelial barrier function. Confocal imaging using mT/mG knock-in mice with red-fluorescent membranes revealed no other obvious morphological differences between EDE corneas and controls for epithelium, stroma, and endothelium. EDE corneas were imaged ex vivo and compared to controls after alkyne-functionalized D-alanine labeling of metabolically-active colonizing bacteria, or by FISH using a universal 16S rRNA gene probe. Both methods revealed very few viable bacteria on EDE corneas after 5 or 10 days (median of 0, upper quartile of ≤ 1 bacteria per field of view for each group [9-12 eyes per group]) similar to control corneas. Furthermore, there was no obvious difference in abundance of conjunctival bacteria, which included previously reported filamentous forms. Thus, despite reduced tear flow and apparent compromise to corneal barrier function (fluorescein staining), EDE murine corneas continue to resist bacterial colonization and maintain the absence of a resident viable bacterial microbiome.


Subject(s)
Cornea/microbiology , Dry Eye Syndromes/microbiology , Eye Infections, Bacterial/microbiology , Pseudomonas aeruginosa/growth & development , Animals , Colony Count, Microbial , Disease Models, Animal , Female , Mice, Inbred C57BL
13.
Prog Retin Eye Res ; 76: 100804, 2020 05.
Article in English | MEDLINE | ID: mdl-31756497

ABSTRACT

Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Bacteria/isolation & purification , Contact Lenses/microbiology , Cornea/microbiology , Eye Infections, Bacterial/etiology , Keratitis/etiology , Prosthesis-Related Infections/microbiology , Eye Infections, Bacterial/drug therapy , Eye Infections, Bacterial/microbiology , Humans , Keratitis/drug therapy , Keratitis/microbiology , Prosthesis-Related Infections/diagnosis
14.
Sci Rep ; 9(1): 13146, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511582

ABSTRACT

The scavenging capacity of glycoprotein DMBT1 helps defend mucosal epithelia against microbes. DMBT1 binding to multiple bacterial species involves its conserved Scavenger Receptor Cysteine-Rich (SRCR) domains, localized to a 16-mer consensus sequence peptide, SRCRP2. Previously, we showed that DMBT1 bound Pseudomonas aeruginosa pili, and inhibited twitching motility, a pilus-mediated movement important for virulence. Here, we determined molecular characteristics required for twitching motility inhibition. Heat-denatured DMBT1 lost capacity to inhibit twitching motility and showed reduced pili binding (~40%). Size-exclusion chromatography of Lys-C-digested native DMBT1 showed that only high-Mw fractions retained activity, suggesting involvement of the N-terminal containing repeated SRCR domains with glycosylated SRCR-Interspersed Domains (SIDs). However, individual or pooled consensus sequence peptides (SRCRPs 1 to 7) showed no activity and did not bind P. aeruginosa pili; nor did recombinant DMBT1 (aa 1-220) or another SRCR-rich glycoprotein, CD163. Enzymatic de-N-glycosylation of DMBT1, but not de-O-glycosylation, reduced its capacity to inhibit twitching motility (~57%), without reducing pili binding. Therefore, DMBT1 inhibition of P. aeruginosa twitching motility involves its N-glycosylation, its pili-binding capacity is insufficient, and it cannot be conferred by the SRCR bacteria-binding peptide domain, either alone or mixed with other unlinked SRCRPs, suggesting an additional mechanism for DMBT1-mediated mucosal defense.


Subject(s)
Bacteria/metabolism , Calcium-Binding Proteins/metabolism , Cysteine/metabolism , DNA-Binding Proteins/metabolism , Peptides/metabolism , Pseudomonas aeruginosa/metabolism , Receptors, Scavenger/metabolism , Tumor Suppressor Proteins/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/isolation & purification , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/isolation & purification , Fimbriae, Bacterial/metabolism , Glycosylation , Hot Temperature , Humans , Peptides/chemistry , Protein Binding , Protein Denaturation , Protein Domains , Pseudomonas aeruginosa/physiology , Receptors, Cell Surface/metabolism , Saliva/metabolism , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/isolation & purification
15.
mBio ; 10(4)2019 08 20.
Article in English | MEDLINE | ID: mdl-31431558

ABSTRACT

Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05 µm s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages.


Subject(s)
Bacteria/metabolism , Epithelial Cells/microbiology , Fimbriae Proteins/metabolism , Fimbriae, Bacterial/metabolism , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , Epithelium, Corneal , Flagellin/metabolism , HeLa Cells , Humans , Membrane Proteins/metabolism , Type III Secretion Systems
16.
Ocul Surf ; 17(1): 119-133, 2019 01.
Article in English | MEDLINE | ID: mdl-30439473

ABSTRACT

PURPOSE: Contact lens wear carries a risk of complications, including corneal infection. Solving these complications has been hindered by limitations of existing animal models. Here, we report development of a new murine model of contact lens wear. METHODS: C57BL/6 mice were fitted with custom-made silicone-hydrogel contact lenses with or without prior inoculation with Pseudomonas aeruginosa (PAO1-GFP). Contralateral eyes served as controls. Corneas were monitored for pathology, and examined ex vivo using high-magnification, time-lapse imaging. Fluorescent reporter mice allowed visualization of host cell membranes and immune cells. Lens-colonizing bacteria were detected by viable counts and FISH. Direct-colony PCR was used for bacterial identification. RESULTS: Without deliberate inoculation, lens-wearing corneas remained free of visible pathology, and retained a clarity similar to non-lens wearing controls. CD11c-YFP reporter mice revealed altered numbers, and distribution, of CD11c-positive cells in lens-wearing corneas after 24 h. Worn lenses showed bacterial colonization, primarily by known conjunctival or skin commensals. Corneal epithelial cells showed vacuolization during lens wear, and after 5 days, cells with phagocyte morphology appeared in the stroma that actively migrated over resident keratocytes that showed altered morphology. Immunofluorescence confirmed stromal Ly6G-positive cells after 5 days of lens wear, but not in MyD88 or IL-1R gene-knockout mice. P. aeruginosa-contaminated lenses caused infectious pathology in most mice from 1 to 13 days. CONCLUSIONS: This murine model of contact lens wear appears to faithfully mimic events occurring during human lens wear, and could be valuable for experiments, not possible in humans, that help solve the pathogenesis of lens-related complications.


Subject(s)
Contact Lenses , Cornea/microbiology , Eye Infections, Bacterial/microbiology , Keratitis/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Receptors, Interleukin-1 Type I/genetics , Animals , Colony Count, Microbial , Contact Lenses/adverse effects , Cornea/pathology , Disease Models, Animal , Eye Infections, Bacterial/metabolism , Eye Infections, Bacterial/pathology , Keratitis/metabolism , Keratitis/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Confocal , Pseudomonas Infections/metabolism , Pseudomonas Infections/pathology , Receptors, Interleukin-1 Type I/metabolism , Tomography, Optical Coherence
17.
Exp Eye Res ; 179: 1-7, 2019 02.
Article in English | MEDLINE | ID: mdl-30343040

ABSTRACT

Research with animal models of Pseudomonas aeruginosa keratitis has shown that use of a topical corticosteroid alone against an established infection can significantly increase the number of colonizing bacteria or worsen clinical disease. Moreover, retrospective analysis has suggested that corticosteroid use in humans is associated with an increased risk of keratitis in eyes with pre-existing disease. Thus, while corticosteroids are often used to reduce ocular inflammation in the absence of infection, the risk of opportunistic infection remains a concern. However, the effect of corticosteroids on the intrinsic barrier function of uninfected corneas is unknown. Here, we tested if short-term topical corticosteroid treatment of an uninfected murine cornea would increase susceptibility to P. aeruginosa colonization or infection after epithelial injury. Topical prednisolone acetate (1%) was administered to one eye of C57BL/6 mice three times a day for 3 days; control eyes were treated with sterile PBS. Prior to inoculation with a cytotoxic P. aeruginosa corneal isolate strain 6206, corneas were subject to superficial-injury by tissue paper blotting, or scratch-injured followed by 12 h of healing. Previously we have shown that blotting renders mouse corneas susceptible to P. aeruginosa adhesion, but not infection, while 12 h healing reduces susceptibility to infection after scratching. Corneas were evaluated at 48 h for bacterial colonization and microbial keratitis (MK). To monitor impact on wound healing, corneal integrity was examined by fluorescein staining immediately after scarification and after 12 h healing. For both the tissue paper blotting and scratch-injury models, there was no significant difference in P. aeruginosa colonization at 48 h between corticosteroid-pretreated eyes and controls. With the blotting model, one case of MK was observed in a control (PBS-pretreated) cornea; none in corticosteroid-pretreated corneas. With the 12 h healing model, MK occurred in 6 of 17 corticosteroid-pretreated eyes versus 2 of 17 controls, a difference not statistically significant. Corticosteroid-pretreated eyes showed greater fluorescein staining 12 h after scarification injury, but this did not coincide with increased colonization or MK. Together, these data show that short-term topical corticosteroid therapy on an uninfected murine cornea does not necessarily enhance its susceptibility to P. aeruginosa colonization or infection after injury, even when it induces fluorescein staining.


Subject(s)
Corneal Injuries/microbiology , Eye Infections, Bacterial/microbiology , Glucocorticoids/therapeutic use , Prednisolone/analogs & derivatives , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/isolation & purification , Administration, Ophthalmic , Animals , Cornea/drug effects , Corneal Injuries/diagnosis , Corneal Ulcer/diagnosis , Corneal Ulcer/microbiology , Disease Models, Animal , Disease Susceptibility , Epithelium, Corneal/injuries , Eye Infections, Bacterial/diagnosis , Female , Fluorescein/metabolism , Fluorescent Dyes/metabolism , Mice , Mice, Inbred C57BL , Prednisolone/therapeutic use , Premedication , Pseudomonas Infections/diagnosis , Retrospective Studies , Wound Healing
18.
Front Microbiol ; 9: 1117, 2018.
Article in English | MEDLINE | ID: mdl-29896179

ABSTRACT

Microbial communities are important for the health of mucosal tissues. Traditional culture and gene sequencing have demonstrated bacterial populations on the conjunctiva. However, it remains unclear if the cornea, a transparent tissue critical for vision, also hosts a microbiome. Corneas of wild-type, IL-1R (-/-) and MyD88 (-/-) C57BL/6 mice were imaged after labeling with alkyne-functionalized D-alanine (alkDala), a probe that only incorporates into the peptidoglycan of metabolically active bacteria. Fluorescence in situ hybridization (FISH) was also used to detect viable bacteria. AlkDala labeling was rarely observed on healthy corneas. In contrast, adjacent conjunctivae harbored filamentous alkDala-positive forms, that also labeled with DMN-Tre, a Corynebacterineae-specific probe. FISH confirmed the absence of viable bacteria on healthy corneas, which also cleared deliberately inoculated bacteria within 24 h. Differing from wild-type, both IL-1R (-/-) and MyD88 (-/-) corneas harbored numerous alkDala-labeled bacteria, a result abrogated by topical antibiotics. IL-1R (-/-) corneas were impermeable to fluorescein suggesting that bacterial colonization did not reflect decreased epithelial integrity. Thus, in contrast to the conjunctiva and other mucosal surfaces, healthy murine corneas host very few viable bacteria, and this constitutive state requires the IL-1R and MyD88. While this study cannot exclude the presence of fungi, viruses, or non-viable or dormant bacteria, the data suggest that healthy murine corneas do not host a resident viable bacterial community, or microbiome, the absence of which could have important implications for understanding the homeostasis of this tissue.

19.
mBio ; 9(3)2018 05 01.
Article in English | MEDLINE | ID: mdl-29717012

ABSTRACT

Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis.IMPORTANCEP. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen.


Subject(s)
ADP Ribose Transferases/metabolism , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , Epithelial Cells/microbiology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/enzymology , Trans-Activators/metabolism , Type III Secretion Systems/metabolism , ADP Ribose Transferases/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Cell Line , Gene Expression Regulation, Bacterial , Humans , Protein Stability , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/physiology , Trans-Activators/genetics , Type III Secretion Systems/chemistry , Type III Secretion Systems/genetics
20.
Sci Rep ; 7(1): 13829, 2017 10 23.
Article in English | MEDLINE | ID: mdl-29062042

ABSTRACT

Previously we reported that corneal epithelial barrier function against Pseudomonas aeruginosa was MyD88-dependent. Here, we explored contributions of MyD88-dependent receptors using vital mouse eyes and confocal imaging. Uninjured IL-1R (-/-) or TLR4 (-/-) corneas, but not TLR2 (-/-), TLR5 (-/-), TLR7 (-/-), or TLR9 (-/-), were more susceptible to P. aeruginosa adhesion than wild-type (3.8-fold, 3.6-fold respectively). Bacteria adherent to the corneas of IL-1R (-/-) or TLR5 (-/-) mice penetrated beyond the epithelial surface only if the cornea was superficially-injured. Bone marrow chimeras showed that bone marrow-derived cells contributed to IL-1R-dependent barrier function. In vivo, but not ex vivo, stromal CD11c+ cells responded to bacterial challenge even when corneas were uninjured. These cells extended processes toward the epithelial surface, and co-localized with adherent bacteria in superficially-injured corneas. While CD11c+ cell depletion reduced IL-6, IL-1ß, CXCL1, CXCL2 and CXCL10 transcriptional responses to bacteria, and increased susceptibility to bacterial adhesion (>3-fold), the epithelium remained resistant to bacterial penetration. IL-1R (-/-) corneas also showed down-regulation of IL-6 and CXCL1 genes with and without bacterial challenge. These data show complex roles for TLR4, TLR5, IL-1R and CD11c+ cells in constitutive epithelial barrier function against P. aeruginosa, with details dependent upon in vivo conditions.


Subject(s)
CD11c Antigen/immunology , Cell Membrane Permeability , Epithelium, Corneal/immunology , Gene Expression Regulation , Myeloid Differentiation Factor 88/immunology , Pseudomonas Infections/immunology , Pseudomonas aeruginosa/immunology , Animals , Bacterial Adhesion , Bone Marrow/immunology , Bone Marrow/metabolism , Bone Marrow/microbiology , CD11c Antigen/metabolism , Cells, Cultured , Epithelium, Corneal/metabolism , Epithelium, Corneal/microbiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Pseudomonas Infections/metabolism , Pseudomonas Infections/microbiology , Receptors, Interleukin-1/physiology , Signal Transduction , Toll-Like Receptor 4/physiology , Toll-Like Receptor 5/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...