Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Language
Publication year range
1.
Int J Mol Sci ; 23(18)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36142465

ABSTRACT

Presenilin-1 (PSEN1) is a crucial subunit within the γ-secretase complex and regulates ß-amyloid (Aß) production. Accumulated evidence indicates that n-butylidenephthalide (BP) acts effectively to reduce Aß levels in neuronal cells that are derived from trisomy 21 (Ts21) induced pluripotent stem cells (iPSCs). However, the mechanism underlying this effect remains unclear. This article aims to investigate the possible mechanisms through which BP ameliorates the development of Alzheimer's disease (AD) and verify the effectiveness of BP through animal experiments. Results from RNA microarray analysis showed that BP treatment in Ts21 iPSC-derived neuronal cells reduced long noncoding RNA (lncRNA) CYP3A43-2 levels and increased microRNA (miR)-29b-2-5p levels. Bioinformatics tool prediction analysis, biotin-labeled miR-29b-2-5p pull-down assay, and dual-luciferase reporter assay confirmed a direct negative regulatory effect for miRNA29b-2-5p on lnc-RNA-CYP3A43-2 and PSEN1. Moreover, BP administration improved short-term memory and significantly reduced Aß accumulation in the hippocampus and cortex of 3xTg-AD mice but failed in miR-29b-2-5p mutant mice generated by CRISP/Cas9 technology. In addition, analysis of brain samples from patients with AD showed a decrease in microRNA-29b-2-5p expression in the frontal cortex region. Our results provide evidence that the LncCYP3A43-2/miR29-2-5p/PSEN1 network might be involved in the molecular mechanisms underlying BP-induced Aß reduction.


Subject(s)
Alzheimer Disease , MicroRNAs , RNA, Long Noncoding , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Biotin , Cognition , Mice , MicroRNAs/metabolism , Plaque, Amyloid , Presenilin-1/genetics , RNA, Long Noncoding/genetics
2.
Adv Biosyst ; 4(12): e1900312, 2020 12.
Article in English | MEDLINE | ID: mdl-32519463

ABSTRACT

Glioblastoma (GBM) is the most common primary malignant brain tumor and despite optimal treatment, long-term survival remains uncommon. GBM can be roughly divided into three different molecular subtypes, each varying in aggressiveness and treatment resistance. Recent evidence shows plasticity between these subtypes in which the proneural (PN) glioma stem-like cells (GSCs) undergo transition into the more aggressive mesenchymal (MES) subtype, leading to therapeutic resistance. Extracellular vesicles (EVs) are membranous structures secreted by nearly every cell and are shown to play a key role in GBM progression by acting as multifunctional signaling complexes. Here, it is shown that EVs derived from MES cells educate PN cells to increase stemness, invasiveness, cell proliferation, migration potential, aggressiveness, and therapeutic resistance by inducing mesenchymal transition through nuclear factor-κB/signal transducer and activator of transcription 3 signaling. The findings could potentially help explore new treatment strategies for GBM and indicate that EVs may also play a role in mesenchymal transition of different tumor types.


Subject(s)
Brain Neoplasms/metabolism , Drug Resistance, Neoplasm/physiology , Epithelial-Mesenchymal Transition/physiology , Extracellular Vesicles/metabolism , Glioblastoma/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Humans , Mice , NF-kappa B/metabolism , Neoplastic Stem Cells , STAT3 Transcription Factor/metabolism , Tumor Cells, Cultured
3.
J Natl Cancer Inst ; 111(3): 283-291, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30257000

ABSTRACT

BACKGROUND: The olfactory ensheathing cells (OECs) migrate from the peripheral nervous system to the central nervous system (CNS), a critical process for the development of the olfactory system and axonal extension after injury in neural regeneration. Because of their ability to migrate to the injury site and anti-inflammatory properties, OECs were tested against different neurological pathologies, but were never studied in the context of cancer. Here, we evaluated OEC tropism to gliomas and their potential as a "Trojan horse" to deliver therapeutic transgenes through the nasal pathway, their natural route to CNS. METHODS: OECs were purified from the mouse olfactory bulb and engineered to express a fusion protein between cytosine deaminase and uracil phosphoribosyltransferase (CU), which convert the prodrug 5-fluorocytosine (5-FC) into cytotoxic metabolite 5-fluorouracil, leading to a bystander killing of tumor cells. These cells were injected into the nasal cavity of mice bearing glioblastoma tumors and OEC-mediated gene therapy was monitored by bioluminescence imaging and confirmed with survival and ex vivo histological analysis. All statistical tests were two-sided. RESULTS: OECs migrated from the nasal pathway to the primary glioma site, tracked infiltrative glioma stemlike cells, and delivered therapeutic transgene, leading to a slower tumor growth and increased mice survival. At day 28, bioluminescence imaging revealed that mice treated with a single injection of OEC-expressing CU and 5-FC had tumor-associated photons (mean [SD]) of 1.08E + 08 [9.7E + 07] vs 4.1E + 08 [2.3E + 08] for control group (P < .001), with a median survival of 41 days vs 34 days, respectively (ratio = 0.8293, 95% confidence interval = 0.4323 to 1.226, P < .001) (n = 9 mice per group). CONCLUSIONS: We show for the first time that autologous transplantation of OECs can target and deliver therapeutic transgenes to brain tumors upon intranasal delivery, the natural route of OECs to the CNS, which could be extended to other types of cancer.


Subject(s)
Cytosine Deaminase/administration & dosage , Fluorouracil/metabolism , Genetic Therapy , Glioma/therapy , Olfactory Bulb/transplantation , Pentosyltransferases/administration & dosage , Transgenes , Administration, Intranasal , Animals , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Female , Flucytosine/metabolism , Glioma/genetics , Humans , Male , Mice , Mice, Inbred C57BL , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Clinics (Sao Paulo) ; 73: e161, 2018.
Article in English | MEDLINE | ID: mdl-29694605

ABSTRACT

OBJECTIVES: Erythropoietin may have neuroprotective potential after ischemia of the central nervous system. Here, we conducted a study to characterize the protective effects of erythropoietin on retinal ganglion cells and gliotic reactions in an experimentally induced oligemia model. METHODS: Rats were subjected to global oligemia by bilateral common carotid artery occlusion and then received either vehicle or erythropoietin via intravitreal injection after 48 h; they were euthanized one week after the injection. The densities of retinal ganglion cells and contents of glial fibrillary acidic protein (astrocytes/Müller cells) and cluster of differentiation 68 clone ED1 (microglia/macrophages), assessed by fluorescence intensity, were evaluated in frozen retinal sections by immunofluorescence and epifluorescence microscopy. RESULTS: Retinal ganglion cells were nearly undetectable one week after oligemia compared with the sham controls; however, these cells were partially preserved in erythropoietin-treated retinas. The contents of glial fibrillary acidic protein and cluster of differentiation 68 clone ED1, markers for reactive gliosis, were significantly higher in retinas after bilateral common carotid artery occlusion than those in both sham and erythropoietin-treated retinas. CONCLUSIONS: The number of partially preserved retinal ganglion cells in the erythropoietin-treated group suggests that erythropoietin exerts a neuroprotective effect on oligemic/ischemic retinas. This effect could be related to the down-modulation of glial reactivity, usually observed in hypoxic conditions, clinically observed during glaucoma or retinal artery occlusion conditions. Therefore, glial reactivity may enhance neurodegeneration in hypoxic conditions, like normal-tension glaucoma and retinal ischemia, and erythropoietin is thus a candidate to be clinically applied after the detection of decreased retinal blood flow.


Subject(s)
Erythropoietin/pharmacology , Glial Fibrillary Acidic Protein/drug effects , Neuroprotective Agents/pharmacology , Retinal Ganglion Cells/drug effects , Animals , Carotid Artery Injuries/surgery , Carotid Artery, Common/surgery , Cell Count , Disease Models, Animal , Ectodysplasins/drug effects , Hematopoietic Cell Growth Factors/pharmacology , Male , Rats, Wistar , Retinal Diseases/pathology
5.
Clinics ; 73: e161, 2018. graf
Article in English | LILACS | ID: biblio-890761

ABSTRACT

OBJECTIVES: Erythropoietin may have neuroprotective potential after ischemia of the central nervous system. Here, we conducted a study to characterize the protective effects of erythropoietin on retinal ganglion cells and gliotic reactions in an experimentally induced oligemia model. METHODS: Rats were subjected to global oligemia by bilateral common carotid artery occlusion and then received either vehicle or erythropoietin via intravitreal injection after 48 h; they were euthanized one week after the injection. The densities of retinal ganglion cells and contents of glial fibrillary acidic protein (astrocytes/Müller cells) and cluster of differentiation 68 clone ED1 (microglia/macrophages), assessed by fluorescence intensity, were evaluated in frozen retinal sections by immunofluorescence and epifluorescence microscopy. RESULTS: Retinal ganglion cells were nearly undetectable one week after oligemia compared with the sham controls; however, these cells were partially preserved in erythropoietin-treated retinas. The contents of glial fibrillary acidic protein and cluster of differentiation 68 clone ED1, markers for reactive gliosis, were significantly higher in retinas after bilateral common carotid artery occlusion than those in both sham and erythropoietin-treated retinas. CONCLUSIONS: The number of partially preserved retinal ganglion cells in the erythropoietin-treated group suggests that erythropoietin exerts a neuroprotective effect on oligemic/ischemic retinas. This effect could be related to the down-modulation of glial reactivity, usually observed in hypoxic conditions, clinically observed during glaucoma or retinal artery occlusion conditions. Therefore, glial reactivity may enhance neurodegeneration in hypoxic conditions, like normal-tension glaucoma and retinal ischemia, and erythropoietin is thus a candidate to be clinically applied after the detection of decreased retinal blood flow.


Subject(s)
Animals , Male , Retinal Ganglion Cells/drug effects , Erythropoietin/pharmacology , Neuroprotective Agents/pharmacology , Glial Fibrillary Acidic Protein/drug effects , Retinal Diseases/pathology , Cell Count , Hematopoietic Cell Growth Factors/pharmacology , Rats, Wistar , Carotid Artery, Common/surgery , Carotid Artery Injuries/surgery , Disease Models, Animal , Ectodysplasins/drug effects
6.
Int J Dev Neurosci ; 47(Pt B): 172-82, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26423362

ABSTRACT

BACKGROUND: The early stages of central nervous system (CNS) development are extremely important. Key events such as neurogenesis, gliogenesis, synaptogenesis, and ontogenesis occur. Malnutrition promotes alterations in CNS development, including the retinal development. During retinal development, malnutrition can induce a delay in some important events, such as neurotransmitter expression and neurogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Postpartum Wistar rats were fed either a commercial diet or a multideficient diet. Pups were breastfed by these rats, and from PND21 were kept with the same diet until PND45. We investigated the effects of malnutrition on adult retinal tissue with regard to (1) endogenous gamma-amino butyric acid (GABA) release induced by excitatory amino acids (EAAs) and (2) the expression of cellular markers related to degenerative events, such as reactive gliosis, microglial activation, cell proliferation and cell death. Endogenous GABA release induced by EAAs was higher in the retina of malnourished rats. The Müller cell population was reduced and displayed alterations in their phenotype profile compatible with reactive gliosis. The expression of glutamine synthetase and markers of cellular proliferation were higher in the retina of malnourished rats. Additionally, retinal dysplasia-like structures were present, indicating disturbance in the cell cycle machinery. CONCLUSION/SIGNIFICANCE: The current study provides evidence that the adult retina shows degenerative processes induced by long-term malnutrition during the postnatal development. These findings have high clinical significance with regard to the identification of possible targets for interventions in malnourished patients.


Subject(s)
Malnutrition/complications , Retina/growth & development , Retina/metabolism , Retinal Degeneration/etiology , Age Factors , Animals , Animals, Newborn , Cell Count , Cell Death/drug effects , Cell Proliferation/drug effects , Cell Proliferation/physiology , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/pathology , Excitatory Amino Acid Agents/pharmacology , Excitatory Amino Acids/pharmacology , Female , Gliosis/chemically induced , Gliosis/pathology , Male , Pregnancy , Rats , Rats, Wistar , Retina/drug effects , Retina/pathology , gamma-Aminobutyric Acid/metabolism
7.
Behav Brain Res ; 263: 34-45, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24462725

ABSTRACT

Generalized anxiety disorder (GAD) is highly prevalent and incapacitating. Here we used the Carioca High-Conditioned Freezing (CHF) rats, a previously validated animal model for GAD, to identify biomarkers and structural changes in the hippocampus that could be part of the underlying mechanisms of their high-anxiety profile. Spatial and fear memory was assessed in the Morris water maze and passive avoidance test. Serum corticosterone levels, immunofluorescence for glucocorticoid receptors (GR) in the dentate gyrus (DG), and western blotting for hippocampal brain derived neurotrophic factor (BDNF) were performed. Immunohistochemistry for markers of cell proliferation (bromodeoxiuridine/Ki-67), neuroblasts (doublecortin), and cell survival were undertaken in the DG, along with spine staining (Golgi) and dendritic arborization tracing. Hippocampal GABA release was assessed by neurochemical assay. Fear memory was higher among CHF rats whilst spatial learning was preserved. Serum corticosterone levels were increased, with decreased GR expression. No differences were observed in hippocampal cell proliferation/survival, but the number of newborn neurons was decreased, along with their number and length of tertiary dendrites. Increased expression of proBDNF and dendritic spines was observed; lower ratio of GABA release in the hippocampus was also verified. These findings suggest that generalized anxiety/fear could be associated with different hippocampal biomarkers, such as increased spine density, possibly as a compensatory mechanism for the decreased hippocampal number of neuroblasts and dendritic arborization triggered by high corticosterone. Disruption of GABAergic signaling and BDNF impairment are also proposed as part of the hippocampal mechanisms possibly underlying the anxious phenotype of this model.


Subject(s)
Anxiety Disorders/physiopathology , Hippocampus/physiopathology , Neurons/physiology , Animals , Anxiety Disorders/pathology , Avoidance Learning/physiology , Biomarkers , Brain-Derived Neurotrophic Factor/metabolism , Corticosterone/blood , Dentate Gyrus/pathology , Dentate Gyrus/physiopathology , Disease Models, Animal , Doublecortin Protein , Fear/physiology , Hippocampus/pathology , Male , Maze Learning/physiology , Memory/physiology , Neural Stem Cells/pathology , Neural Stem Cells/physiology , Neurons/pathology , Rats , Rats, Wistar , Receptors, Glucocorticoid/metabolism , Space Perception/physiology , gamma-Aminobutyric Acid/metabolism
8.
J Neurochem ; 128(6): 829-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24117434

ABSTRACT

Müller cells constitute the main glial cell type in the retina where it interacts with virtually all cells displaying relevant functions to retinal physiology. Under appropriate stimuli, Müller cells may undergo dedifferentiation, being able to generate other neural cell types. Here, we show that purified mouse Müller cells in culture express a group of proteins related to the dopaminergic phenotype, including the nuclear receptor-related 1 protein, required for dopaminergic differentiation, as well the enzyme tyrosine hydroxylase. These dopaminergic components are active, since Müller cells are able to synthesize and release dopamine to the extracellular medium. Moreover, Müller-derived tyrosine hydroxylase can be regulated, increasing its activity because of phosphorylation of serine residues in response to agents that increase intracellular cAMP levels. These observations were extended to glial cells obtained from adult monkey retinas with essentially the same results. To address the potential use of dopaminergic Müller cells as a source of dopamine in cell therapy procedures, we used a mouse model of Parkinson's disease, in which mouse Müller cells with the dopaminergic phenotype were transplanted into the striatum of hemi-parkinsonian mice generated by unilateral injection of 6-hydroxydopamine. These cells fully decreased the apomorphine-induced rotational behavior and restored motor functions in these animals, as measured by the rotarod and the forelimb-use asymmetry (cylinder) tests. The data indicate local restoration of dopaminergic signaling in hemi-parkinsonian mice confirmed by measurement of striatal dopamine after Müller cell grafting.


Subject(s)
Dopaminergic Neurons/transplantation , Ependymoglial Cells/transplantation , Parkinsonian Disorders/pathology , Parkinsonian Disorders/therapy , Animals , Cebus , Cell Differentiation/physiology , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/physiology , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Parkinsonian Disorders/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Recovery of Function/physiology , Tyrosine 3-Monooxygenase/metabolism
9.
J Neurochem ; 124(5): 621-31, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23227973

ABSTRACT

Pituitary Adenylyl Cyclase-Activating Polypeptide (PACAP) is a neuroactive peptide present in the avian retina where it activates adenylyl cyclase (AC) since early in development via PACAP receptors. The synthesis of cAMP in response to PACAP is observed since embryonic day 8/9 (E8/9). After E12, signaling via PACAP receptors desensitizes, reaching very low levels in the mature tissue. We show here that chronic administration of PACAP in vitro desensitizes PACAP-induced cAMP accumulation, while the administration of the PACAP antagonist (PACAP 6-38) re-sensitizes PACAP receptor/cyclase system in vitro and in vivo. Moreover, a twofold increase in the number of tyrosine hydroxylase positive (TH⁺) cells is observed after in vivo injection of PACAP6-38. NURR1, a transcription factor associated with the differentiation of dopaminergic cells in the CNS, is present in the chick retina in all developmental stages studied. The presence of NURR1 positive cells in the mature tissue far exceeds the number of TH⁺ cells, suggesting that these NURR1-positive cells might have the potential to express the dopaminergic phenotype. Our data show that if PACAP signaling is increased in mature retinas, plastic changes in dopaminergic phenotype can be achieved.


Subject(s)
Neuronal Plasticity/physiology , Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism , Retina/metabolism , Animals , Blotting, Western , Chickens , Cyclic AMP , Dopamine , Immunohistochemistry , Phenotype , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...