Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(11): 1832-1839, 2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34795874

ABSTRACT

Calcium and integrin binding protein 1 (CIB1) is a small, intracellular protein recently implicated in survival and proliferation of triple-negative breast cancer (TNBC). Considering its interactions with PAK1 and downstream signaling, CIB1 has been suggested as a potential therapeutic target in TNBC. As such, CIB1 has been the focus of inhibitor discovery efforts. To overcome issues of potency and stability in previously reported CIB1 inhibitors, we deploy mRNA display to discover new cyclic peptide inhibitors with improved biophysical properties and cellular activity. We advance UNC10245131, a cyclic peptide with low nanomolar affinity and good selectivity for CIB1 over other EF-hand domain proteins and improved permeability and stability over previously identified linear peptide inhibitor UNC10245092. Unlike UNC10245092, UNC10245131 lacks cytotoxicity and does not affect downstream signaling. Despite this, UNC10245131 is a potent ligand that could aid in clarifying roles of CIB1 in TNBC survival and proliferation and other CIB1-associated biological phenotypes.

2.
J Am Chem Soc ; 142(11): 5024-5028, 2020 03 18.
Article in English | MEDLINE | ID: mdl-32109054

ABSTRACT

PaaA is a RiPP enzyme that catalyzes the transformation of two glutamic acid residues within a substrate peptide into the bicyclic core of Pantocin A. Here, for the first time, we use mRNA display techniques to understand RiPP enzyme-substrate interactions to illuminate PaaA substrate recognition. Additionally, our data revealed insights into the enzymatic timing of glutamic acid modification. The technique developed is quite sensitive and a significant advancement over current RiPP studies and opens the door to enzyme modified mRNA display libraries for natural product-like inhibitor pans.


Subject(s)
Bacterial Proteins/chemistry , Carbon-Nitrogen Ligases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Nitrogen Ligases/metabolism , Enzyme Assays , Pantoea/enzymology , Point Mutation , Protein Binding , Protein Engineering/methods , RNA, Messenger/genetics , Substrate Specificity
3.
J Am Chem Soc ; 141(2): 758-762, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30602112

ABSTRACT

Thiopeptides are natural antibiotics that are fashioned from short peptides by multiple layers of post-translational modification. Their biosynthesis, in particular the pyridine synthases that form the macrocyclic antibiotic core, has attracted intensive research but is complicated by the challenges of reconstituting multiple-pathway enzymes. By combining select RiPP enzymes with cell free expression and flexizyme-based codon reprogramming, we have developed a benchtop biosynthesis of thiopeptide scaffolds. This strategy side-steps several challenges related to the investigation of thiopeptide enzymes and allows access to analytical quantities of new thiopeptide analogs. We further demonstrate that this strategy can be used to validate the activity of new pyridine synthases without the need to reconstitute the cognate prior pathway enzymes.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Aptamers, Nucleotide/chemistry , Peptides, Cyclic/chemical synthesis , RNA, Catalytic/chemistry , Thiazoles/chemical synthesis , Amino Acid Sequence , Proof of Concept Study , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL