Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(13): 15159-15167, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33760585

ABSTRACT

This paper describes the simple, highly reproducible, and robust synthesis of a new solid organic/inorganic electrolyte based on the ionic liquid (IL) 1-butyl-3-(carboxyundecyl)imidazolium bis(trifluoromethylsulfonyl)imide tethered to zirconia nanoparticles (15-25 nm) by coordination and named ZrO2@IL. The IL monolayer formation, ensured by two-dimensional solid-state NMR, at the nanoparticles' surface considerably reduces both the IL's consumption and the IL amount at the ZrO2 surface compared to the IL-based hybrid electrolytes reported in the literature. After LiTFSI, used as a lithium source, content optimization (26 wt %), the hybrid exhibits unprecedented stable conductivity passing from 0.6 × 10-4 S.cm-1 to 0.15 × 10-4 S.cm-1, respectively, from 85 °C to room temperature (25 °C). Unlike silica which is commonly adopted for this type of hybrid material, zirconia makes it possible to produce more impact-resistant pellets that are easier to compact, thus being favorable for accurate conductivity studies and battery development by electrode/composite/solid electrolyte layer stacking. The ZrO2@IL/LiTFSI solid hybrid electrolyte's thermal stability (up to 300 °C) and performance make this electrolyte suitable for lithium conduction in all-solid-state batteries.

2.
Sci Rep ; 9(1): 18031, 2019 Dec 02.
Article in English | MEDLINE | ID: mdl-31792314

ABSTRACT

Among the 3D-printing technologies, fused deposition modeling (FDM) represents a promising route to enable direct incorporation of the battery within the final 3D object. Here, the preparation and characterization of lithium iron phosphate/polylactic acid (LFP/PLA) and SiO2/PLA 3D-printable filaments, specifically conceived respectively as positive electrode and separator in a lithium-ion battery is reported. By means of plasticizer addition, the active material loading within the positive electrode is raised as high as possible (up to 52 wt.%) while still providing enough flexibility to the filament to be printed. A thorough analysis is performed to determine the thermal, electrical and electrochemical effect of carbon black as conductive additive in the positive electrode and the electrolyte uptake impact of ceramic additives in the separator. Considering both optimized filaments composition and using our previously reported graphite/PLA filament for the negative electrode, assembled and "printed in one-shot" complete LFP/Graphite battery cells are 3D-printed and characterized. Taking advantage of the new design capabilities conferred by 3D-printing, separator patterns and infill density are discussed with a view to enhance the liquid electrolyte impregnation and avoid short-circuits.

3.
ACS Appl Mater Interfaces ; 9(8): 7050-7058, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28128548

ABSTRACT

Lithium superionic conductor (LISICON)-related compositions Li4±xSi1-xXxO4 (X = P, Al, or Ge) are important materials that have been identified as potential solid electrolytes for all solid state batteries. Here, we show that the room temperature lithium ion conductivity can be improved by several orders of magnitude through substitution on Si sites. We apply a combined computer simulation and experimental approach to a wide range of compositions (Li4SiO4, Li3.75Si0.75P0.25O4, Li4.25Si0.75Al0.25O4, Li4Al0.33Si0.33P0.33O4, and Li4Al1/3Si1/6Ge1/6P1/3O4) which include new doped materials. Depending on the temperature, three different Li+ ion diffusion mechanisms are observed. The polyanion mixing introduced by substitution lowers the temperature at which the transition to a superionic state with high Li+ ion conductivity occurs. These insights help to rationalize the mechanism of the lithium ion conductivity enhancement and provide strategies for designing materials with promising transport properties.

SELECTION OF CITATIONS
SEARCH DETAIL