Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters











Publication year range
1.
PLoS One ; 12(7): e0180806, 2017.
Article in English | MEDLINE | ID: mdl-28678828

ABSTRACT

A system capable of biocatalytic conversion of distributed sources of single carbon gases such as carbon monoxide into hydrocarbons can be highly beneficial for developing commercially viable biotechnology applications in alternative energy. Several anaerobic bacterial strains can be used for such conversion. The anaerobic carbon monoxide-fixing bacteria Clostridium ljungdahlii OTA1 is a model CO assimilating microorganism that currently requires cryogenic temperature for storage of the viable strains. If these organisms can be stabilized and concentrated in thin films in advanced porous materials, it will enable development of high gas fraction, biocomposite absorbers with elevated carbon monoxide (CO) mass transfer rate, that require minimal power input and liquid, and demonstrate elevated substrate consumption rate compared to conventional suspended cell bioreactors. We report development of a technique for dry-stabilization of C. ljungdahlii OTA1 on a paper biocomposite. Bacterial samples coated onto paper were desiccated in the presence of trehalose using convective drying and stored at 4°C. Optimal dryness was ~1g H2O per gram of dry weight (gDW). CO uptake directly following biocomposite rehydration steadily increases over time indicating immediate cellular metabolic recovery. A high-resolution Raman microspectroscopic hyperspectral imaging technique was employed to spatially quantify the residual moisture content. We have demonstrated for the first time that convectively dried and stored C. ljungdahlii strains were stabilized in a desiccated state for over 38 days without a loss in CO absorbing reactivity. The Raman hyperspectral imaging technique described here is a non-invasive characterization tool to support development of dry-stabilization techniques for microorganisms on inexpensive porous support materials. The present study successfully extends and implements the principles of dry-stabilization for preservation of strictly anaerobic bacteria as an alternative to lyophilization or spray drying that could enable centralized biocomposite biocatalyst fabrication and decentralized bioprocessing of CO to liquid fuels or chemicals.


Subject(s)
Biocompatible Materials , Clostridium/metabolism , Preservation, Biological/methods , Carbon Monoxide/metabolism , Spectrum Analysis, Raman/methods
2.
Langmuir ; 33(21): 5304-5313, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28481540

ABSTRACT

We report how dielectrophoresis (DEP) can be used as a tool for the fabrication of biocomposite coatings of photoreactive cyanobacteria (Synechococcus PCC7002) on flexible polyester sheets (PEs). The PE substrates were precoated by a layer-by-layer assembled film of charged polyelectrolytes. In excellent agreement between experimental data and numerical simulations, the directed assembly process driven by external electric field results in the formation of 1D chains and 2D sheets by the cells. The preassembled cyanobacteria chains and arrays became deposited on the substrate and remained in place after the electric field was turned off due to the electrostatic attraction between the negatively charged cell surfaces and the positively charged polyelectrolyte-coated PE. The DEP-assisted packing of cyanobacteria is close to the maximal surface coverage of ∼70% estimated from convectively assembled monolayers. Confocal laser scanning microscopy and spectrophotometry confirm that the photosynthetic pigment integrity of the Synechococcus cells is preserved after DEP immobilization. The significant decrease of the light scattering and the enhanced transmittance of these field-assembled cyanobacteria coatings demonstrate reduced self-shading compared to suspension cultures. Thus, we achieved the assembly of structured cyanobacteria coatings that optimize cell surface coverage and preserve cell viability after immobilization. This is a step toward the development of flexible multilayered cell-based photoabsorbing biomaterials that can serve as components of "biomimetic leaves" for utilizing solar energy to recycle CO2 into fuels or chemicals.


Subject(s)
Cyanobacteria , Biocompatible Materials , Biomimetics , Cell Survival , Polyesters
3.
Appl Microbiol Biotechnol ; 101(4): 1615-1630, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27866253

ABSTRACT

A Clostridium ljungdahlii lab-isolated spontaneous-mutant strain, OTA1, has been shown to produce twice as much ethanol as the C. ljungdahlii ATCC 55383 strain when cultured in a mixotrophic medium containing fructose and syngas. Whole-genome sequencing identified four unique single nucleotide polymorphisms (SNPs) in the C. ljungdahlii OTA1 genome. Among these, two SNPs were found in the gene coding for AcsA and HemL, enzymes involved in acetyl-CoA formation from CO/CO2. Homology models of the respective mutated enzymes revealed alterations in the size and hydrogen bonding of the amino acids in their active sites. Failed attempts to grow OTA1 autotrophically suggested that one or both of these mutated genes prevented acetyl-CoA synthesis from CO/CO2, demonstrating that its activity was required for autotrophic growth by C. ljungdahlii. An inoperable Wood-Ljungdahl pathway resulted in higher CO2 and ethanol yields and lower biomass and acetate yields compared to WT for multiple growth conditions including heterotrophic and mixotrophic conditions. The two other SNPs identified in the C. ljungdahlii OTA1 genome were in genes coding for transcriptional regulators (CLJU_c09320 and CLJU_c18110) and were found to be responsible for deregulated expression of co-localized arginine catabolism and 2-deoxy-D-ribose catabolism genes. Growth medium supplementation experiments suggested that increased arginine metabolism and 2-deoxy-D-ribose were likely to have minor effects on biomass and fermentation product yields. In addition, in silico flux balance analysis simulating mixotrophic and heterotrophic conditions showed no change in flux to ethanol when flux through HemL was changed whereas limited flux through AcsA increased the ethanol flux for both simulations. In characterizing the effects of the SNPs identified in the C. ljungdahlii OTA1 genome, a non-autotrophic hyper ethanol-producing strain of C. ljungdahlii was identified that has utility for further physiology and strain performance studies and as a biocatalyst for industrial applications.


Subject(s)
Clostridium/metabolism , Ethanol/metabolism , Acetyl Coenzyme A/metabolism , Aldehyde Oxidoreductases/metabolism , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Multienzyme Complexes/metabolism
4.
Biotechnol Bioeng ; 113(9): 1913-23, 2016 09.
Article in English | MEDLINE | ID: mdl-26927418

ABSTRACT

We propose a novel approach to continuous bioprocessing of gases. A miniaturized, coated-paper strip, high gas fraction, biocomposite absorber has been developed using slowly shaken horizontal anaerobic tubes. Concentrated Clostridium ljungdahlii OTA1 was used as a model system. These gas absorbers demonstrate elevated CO mass transfer with low power input, reduced liquid requirements, elevated substrate consumption, and increased product secretion compared to shaken suspended cells. Concentrated OTA1 cell paste was coated by extrusion onto chromatography paper. The immobilized system shows high, constant reactivity immediately upon rehydration. Cell adhesion was by adsorption to the cellulose fibers; visualized by SEM. The C. ljungdahlii OTA1 coated paper mounted above the liquid level absorbs CO and H2 from a model syngas secreting acetate with minimal ethanol. At 100 rpm shaking speed (7.7 Wm(-3) ) the optimal cell loading is 6.5 gDCW m(-2) to maintain high CO absorbing reactivity without the cells coming off of the paper into the liquid phase. Reducing the medium volume from 10 mL to 4 mL (15% of tube volume) did not decrease CO reactivity. The reduced liquid volume increased secreted product concentration by 80%. The specific CO consumption by paper biocomposites was higher at all shaking frequencies <100 rpm than suspended cells under identical incubation conditions. At 25 rpm the biocomposite outperforms suspended cells for CO absorption by 2.5-fold, with an estimated power reduction of 97% over the power input at 100 rpm. The estimated minimum kL a for miniaturized biocomposite gas-absorbers is ∼100 h(-1) , 10 to 10(4) less power input than other syngas fermentation systems reported in the literature at similar kL a. Specific consumption rates in a biocomposite were ∼14 mmol gDCW-1 h(-1) . This work intensified CO absorption and reactivity by 14-fold to 94 mmol CO m(-2) h(-1) over previous C. ljungdahlii OTA1 work by our group. Specific acetate production rates were 23 mM h(-1) or 46 mmol m(-2) h(-1) . The specific rates and apparent kL a scaled linearly with biocomposite coating area. Biotechnol. Bioeng. 2016;113: 1913-1923. © 2016 Wiley Periodicals, Inc.


Subject(s)
Biofuels , Bioreactors/microbiology , Clostridium/metabolism , Acetates/metabolism , Ethanol/metabolism , Gases/metabolism , Paper
5.
J Ind Microbiol Biotechnol ; 42(7): 1027-38, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25952117

ABSTRACT

Bacillus methanolicus MGA3 is a Gram-positive aerobic methylotroph growing optimally at 50-53°C. Methylotrophy in B. methanolicus is encoded on pBM19 and by two chromosomal copies of the methanol dehydrogenase (mdh), hexulose phosphate synthase (hps) and phosphohexuloisomerase (phi) genes. However, there are no published studies on the regulation of methylotrophy or the dominant mechanism of detoxification of intracellular formaldehyde in response to high methanol concentration. The µ max of B. methanolicus MGA3 was assessed on methanol, mannitol and glucose. B. methanolicus achieved a µ max at 25 mM initial methanol of 0.65 ± 0.007 h(-1), which decreased to 0.231 ± 0.004 h(-1) at 2 M initial methanol. Slow growth was also observed with initial methanol concentrations of >2 M. The µ max on mannitol and glucose are 0.532 ± 0.002 and 0.336 ± 0.003 h(-1), respectively. Spiking cultures with additional methanol (100 mM) did not disturb the growth rate of methanol-grown cells, whereas, a 50 mM methanol spike halted the growth in mannitol. Surprisingly, growth in methanol was inhibited by 1 mM formaldehyde, while mannitol-grown cells tolerated 2 mM. Moreover, mannitol-grown cells removed formaldehyde faster than methanol-grown cells. Further, we show that methanol oxidation in B. methanolicus MGA3 is mainly carried out by the pBM19-encoded mdh. Formaldehyde and formate addition down-regulate the mdh and hps genes in methanol-grown cells. Similarly, they down-regulate mdh genes in mannitol-grown cells, but up-regulate hps. Phosphofructokinase (pfk) is up-regulated in both methanol and mannitol-grown cells, which suggests that pfk may be a possible synthetic methylotrophy target to reduce formaldehyde growth toxicity at high methanol concentrations.


Subject(s)
Alcohol Oxidoreductases/genetics , Bacillus/enzymology , Bacterial Proteins/genetics , Formaldehyde/metabolism , Methanol/metabolism , Alcohol Oxidoreductases/metabolism , Bacillus/genetics , Bacillus/growth & development , Bacterial Proteins/metabolism , Culture Media , Gene Expression , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Glucose/metabolism , Mannitol/metabolism , Metabolic Networks and Pathways , Ribulosephosphates/metabolism
6.
Biotechnol Bioeng ; 112(2): 263-71, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25115963

ABSTRACT

Although biofilm-based biotechnologies exhibit a large potential as solutions for off-gas treatment, the high water content of biofilms often causes pollutant mass transfer limitations, which ultimately limit their widespread application. The present study reports on the proof of concept of the applicability of bioactive latex coatings for air pollution control. Toluene vapors served as a model volatile organic compound (VOC). The results showed that Pseudomonas putida F1 cells could be successfully entrapped in nanoporous latex coatings while preserving their toluene degradation activity. Bioactive latex coatings exhibited toluene specific biodegradation rates 10 times higher than agarose-based biofilms, because the thin coatings were less subject to diffusional mass transfer limitations. Drying and pollutant starvation were identified as key factors inducing a gradual deterioration of the biodegradation capacity in these innovative coatings. This study constitutes the first application of bioactive latex coatings for VOC abatement. These coatings could become promising means for air pollution control.


Subject(s)
Air Pollutants/isolation & purification , Biodegradation, Environmental , Biofilms , Volatile Organic Compounds/isolation & purification , Air Pollutants/analysis , Air Pollutants/chemistry , Pseudomonas putida , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry
7.
Biotechnol Bioeng ; 111(10): 1993-2008, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24890862

ABSTRACT

We describe a latex wet coalescence extrusive coating method that produces up to 10-fold specific photosynthetic rate enhancements by nitrate-limited non-growing cyanobacteria deposited onto paper, hydrated and placed in the gas-phase of small tube photobioreactors. These plant leaf-like biocomposites were used to study the tolerance of cyanobacteria strains to illumination and temperature using a solar simulator. We report sustained CO2 absorption and O2 production for 500 h by hydrated gas-phase paper coatings of non-growing Synechococcus PCC7002, Synechocystis PCC6803, Synechocystis PCC6308, and Anabaena PCC7120. Nitrate-starved cyanobacteria immobilized on the paper surface by the latex binder did not grow out of the coatings into the bulk liquid. The average CO2 consumption rate in Synechococcus coatings is 5.67 mmol m(-2) h(-1) which is remarkably close to the rate reported in the literature for Arabidopsis thaliana leaves under similar experimental conditions (18 mmol m(-2) h(-1) ). We observed average ratios of oxygen production to carbon dioxide consumption (photosynthetic quotient, PQ) between 1.3 and 1.4, which may indicate a strong dependence on nitrate assimilation during growth and was used to develop a non-growth media formulation for intrinsic kinetics studies. Photosynthetic intensification factors (PIF) (O2 production by nitrate-limited cyanobacteria in latex coatings/O2 produced by nitrate-limited cell suspensions) in cyanobacteria biocomposites prepared from wet cell pellets concentrated 100- to 300-fold show 7-10 times higher specific reactivity compared to cells in suspension under identical nitrate-limited non-growth conditions. This is the first report of changes of cyanobacteria tolerance to temperature and light intensities after deposition as a thin coating on a porous matrix, which has important implications for gas-phase photobioreactor design using porous composite materials. Cryo-fracture SEM and confocal microscopy images of cell coating distribution on the paper biocomposite suggest that the spatial arrangement of the cells in the coating can affect photoreactivity. This technique could be used to fabricate very stable, multi-organism composite coatings on flexible microfluidic devices in the gas-phase capable of harvesting light in a broader range of wavelengths, to optimize thermotolerant, desiccation tolerant, or halotolerant cyanobacteria that produce O2 with secretion of liquid-fuel precursors synthesized from CO2 .


Subject(s)
Anabaena/physiology , Biomimetics/methods , Photosynthesis , Synechococcus/physiology , Synechocystis/physiology , Anabaena/growth & development , Biomimetic Materials/metabolism , Bioreactors , Carbon Dioxide/metabolism , Cell Engineering/methods , Cells, Immobilized/physiology , Nitrates/metabolism , Oxygen/metabolism , Paper , Synechococcus/growth & development , Synechocystis/growth & development
8.
Materials (Basel) ; 6(5): 1803-1825, 2013 May 07.
Article in English | MEDLINE | ID: mdl-28809244

ABSTRACT

Fabricating industrial-scale photoreactive composite materials containing living cells, requires a deposition strategy that unifies colloid science and cell biology. Convective assembly can rapidly deposit suspended particles, including whole cells and waterborne latex polymer particles into thin (<10 µm thick), organized films with engineered adhesion, composition, thickness, and particle packing. These highly ordered composites can stabilize the diverse functions of photosynthetic cells for use as biophotoabsorbers, as artificial leaves for hydrogen or oxygen evolution, carbon dioxide assimilation, and add self-cleaning capabilities for releasing or digesting surface contaminants. This paper reviews the non-biological convective assembly literature, with an emphasis on how the method can be modified to deposit living cells starting from a batch process to its current state as a continuous process capable of fabricating larger multi-layer biocomposite coatings from diverse particle suspensions. Further development of this method will help solve the challenges of engineering multi-layered cellular photocomposite materials with high reactivity, stability, and robustness by clarifying how process, substrate, and particle parameters affect coating microstructure. We also describe how these methods can be used to selectively immobilize photosynthetic cells to create biomimetic leaves and compare these biocomposite coatings to other cellular encapsulation systems.

9.
Biotechnol Prog ; 28(6): 1534-41, 2012.
Article in English | MEDLINE | ID: mdl-23011664

ABSTRACT

Filtration of an isotonic suspension of baker's yeast through a 0.45-µm membrane was studied at two different pressures, 40 and 80 kPa, for yeast concentrations ranging from 0.14 to 51 kg/m(3) (dry weight). For a yeast volume fraction above 0.06 (~21.8 kg/m(3) ), the porosity of the yeast cake is less dependent on the suspension concentration. For highly diluted suspensions, the specific cake resistance approaches a minimum that depends on the filtration pressure. Correlation functions of cake porosity and specific cake resistance were obtained for the concentration range investigated showing that the Kozeny-Carman coefficient increases when the applied pressure increases. Both filtration pressure and slurry concentration can be process controlled. In the range of moderate yeast concentration, the filtrate flux may be increased by manipulating the filtration pressure and the slurry concentration, thereby improving the overall process efficiency. The complex behavior of yeast cakes at high slurry concentration can be described by a conventional model as long as part of yeast cells are assumed to form aggregates, which behave as single bigger particles. The aggregation effect may be accounted for using a binary mixture model.


Subject(s)
Biotechnology/methods , Cell Culture Techniques/methods , Filtration/methods , Saccharomyces cerevisiae/chemistry , Computer Simulation , Porosity , Pressure , Suspensions
10.
J Colloid Interface Sci ; 380(1): 192-200, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22658210

ABSTRACT

The structures resulting from convective-sedimentation assembly (CSA) of bimodal suspensions (4.1-10% solids) of strongly charged sulfate latex microspheres (zeta potential -55.9±1.8 mV at pH 8.0) and weakly charged Saccharomyces cerevisiae (zeta potential -18.7±0.71 mV at pH 8.0) on glass, polyester, polypropylene, and aluminum foil substrates was evaluated. This study shows how substrate wettability, suspension composition, particle size ratio and surface charge affect the deposition process and resulting coating microstructure (particle ordering and void space). Size ratio and charge influence deposition, convective mixing or demixing and relative particle locations. Substrate wettability and suspension composition influence coating microstructure by controlling suspension delivery and spreading across the substrate. S. cerevisiae behave like negatively-charged colloidal particles during CSA. CSA of particle-yeast blends result in open-packed structures (15-45% mean void space), instead of tightly packed coatings attainable with single component systems, confirming the existence of significant polymer particle-yeast interactions and formation of particle aggregates that disrupt coating microstructure during deposition. Further optimization of the process should allow void space reduction and deposition of cells plus adhesive polymer particles into tightly packed adhesive monolayer coatings for biosensors, biophotoabsorbers, energy applications, and highly reactive microbial absorbers.


Subject(s)
Colloids/chemistry , Microspheres , Saccharomyces cerevisiae/cytology , Sulfates/chemistry , Aluminum/chemistry , Cells, Immobilized/cytology , Glass/chemistry , Particle Size , Polyesters/chemistry , Polypropylenes/chemistry
11.
J Ind Microbiol Biotechnol ; 39(9): 1269-78, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22592947

ABSTRACT

We describe a latex wet coalescence method for gas-phase immobilization of microorganisms on paper which does not require drying for adhesion. This method reduces drying stresses to the microbes. It is applicable for microorganisms that do not tolerate desiccation stress during latex drying even in the presence of carbohydrates. Small surface area, 10-65 µm thick coatings were generated on chromatography paper strips and placed in the head-space of vertical sealed tubes containing liquid to hydrate the paper. These gas-phase microbial coatings hydrated by liquid in the paper pore space demonstrated absorption or evolution of H2, CO, CO2 or O2. The microbial products produced, ethanol and acetate, diffuse into the hydrated paper pores and accumulate in the liquid at the bottom of the tube. The paper provides hydration to the back side of the coating and also separates the biocatalyst from the products. Coating reactivity was demonstrated for Chlamydomonas reinhardtii CC124, which consumed CO2 and produced 10.2 ± 0.2 mmol O2 m⁻² h⁻¹, Rhodopseudomonas palustris CGA009, which consumed acetate and produced 0.47 ± 0.04 mmol H2 m⁻² h⁻¹, Clostridium ljungdahlii OTA1, which consumed 6 mmol CO m⁻² h⁻¹, and Synechococcus sp. PCC7002, which consumed CO2 and produced 5.00 ± 0.25 mmol O2 m⁻² h⁻¹. Coating thickness and microstructure were related to microbe size as determined by digital micrometry, profilometry, and confocal microscopy. The immobilization of different microorganisms in thin adhesive films in the gas phase demonstrates the utility of this method for evaluating genetically optimized microorganisms for gas absorption and gas evolution.


Subject(s)
Bacterial Adhesion , Gases/metabolism , Latex/chemistry , Paper , Rhodopseudomonas/metabolism , Absorption , Biocatalysis , Bioreactors , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Gases/chemistry , Hydrogen/metabolism , Oxygen/metabolism , Rhodopseudomonas/growth & development
12.
Methods Mol Biol ; 743: 213-22, 2011.
Article in English | MEDLINE | ID: mdl-21553194

ABSTRACT

This chapter describes a method for generating uniform lab-scale biocatalytic nanoporous latex coatings. Nearly everything we come into contact with on a daily basis has been coated with some polymer material. High-speed waterborne polymer coating and ink-jet printing techniques are mature technologies. Methods for immobilizing microorganisms in lab-scale waterborne latex biocatalytic coatings draw on existing coating technologies for generating precision industrial paint and paper coatings and would therefore be amenable to scale up in future applications. An inherent problem for many lab-scale techniques is coating uniformity. The method described here has been developed to dramatically increase the uniformity of multiple individual small surface area coatings derived from a single coating template by minimizing edge effects due to emulsion drying adjacent to the edge of the mask.


Subject(s)
Cells, Immobilized/metabolism , Coated Materials, Biocompatible/chemical synthesis , Latex/chemistry , Nanostructures/chemistry , Polyesters/metabolism , Bacteria/metabolism , Biocatalysis , Biofilms , Cells, Immobilized/chemistry , Coated Materials, Biocompatible/metabolism , Hevea , Latex/metabolism , Polyesters/chemistry , Surface Properties
13.
Biotechnol Prog ; 26(4): 907-18, 2010.
Article in English | MEDLINE | ID: mdl-20730752

ABSTRACT

Intact cells are the most stable form of nature's photosynthetic machinery. Coating-immobilized microbes have the potential to revolutionize the design of photoabsorbers for conversion of sunlight into fuels. Multi-layer adhesive polymer coatings could spatially combine photoreactive bacteria and algae (complementary biological irradiance spectra) creating high surface area, thin, flexible structures optimized for light trapping, and production of hydrogen (H(2)) from water, lignin, pollutants, or waste organics. We report a model coating system which produced 2.08 +/- 0.01 mmol H(2) m(-2) h(-1) for 4,000 h with nongrowing Rhodopseudomonas palustris, a purple nonsulfur photosynthetic bacterium. This adhesive, flexible, nanoporous Rps. palustris latex coating produced 8.24 +/- 0.03 mol H(2) m(-2) in an argon atmosphere when supplied with acetate and light. A simple low-pressure hydrogen production and trapping system was tested using a 100 cm(2) coating. Rps. palustris CGA009 was combined in a bilayer coating with a carotenoid-less mutant of Rps. palustris (CrtI(-)) deficient in peripheral light harvesting (LH2) function. Cryogenic field emission gun scanning electron microscopy (cryo-FEG-SEM) and high-pressure freezing were used to visualize the microstructure of hydrated coatings. A light interaction and reactivity model was evaluated to predict optimal coating thickness for light absorption using the Kubelka-Munk theory (KMT) of reflectance and absorptance. A two-flux model predicted light saturation thickness with good agreement to observed H(2) evolution rate. A combined materials and modeling approach could be used for guiding cellular engineering of light trapping and reactivity to enhance overall photosynthetic efficiency per meter square of sunlight incident on photocatalysts.


Subject(s)
Biomimetics/methods , Photochemistry/methods , Photosynthesis/physiology , Rhodopseudomonas/metabolism , Bioreactors/microbiology , Hydrogen/metabolism
14.
Appl Microbiol Biotechnol ; 87(3): 951-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20372887

ABSTRACT

We here present the pyc gene encoding pyruvate carboxylase (PC), and the hom-1 and hom-2 genes encoding two active homoserine dehydrogenase (HD) proteins, in methylotrophic Bacillus methanolicus MGA3. In general, both PC and HD are regarded as key targets for improving bacterial L-lysine production; PC plays a role in precursor oxaloacetate (OAA) supply while HD controls an important branch point in the L-lysine biosynthetic pathway. The hom-1 and hom-2 genes were strongly repressed by L-threonine and L-methionine, respectively. Wild-type MGA3 cells secreted 0.4 g/l L-lysine and 59 g/l L-glutamate under optimised fed batch methanol fermentation. The hom-1 mutant M168-20 constructed herein secreted 11 g/l L-lysine and 69 g/l of L-glutamate, while a sixfold higher L-lysine overproduction (65 g/l) of the previously constructed classical B. methanolicus mutant NOA2#13A52-8A66 was accompanied with reduced L-glutamate production (28 g/l) and threefold elevated pyc transcription level. Overproduction of PC and its mutant enzyme P455S in M168-20 had no positive effect on the volumetric L-lysine yield and the L-lysine yield on methanol, and caused significantly reduced volumetric L-glutamate yield and L: -glutamate yield on methanol. Our results demonstrated that hom-1 represents one key target for achieving L-lysine overproduction, PC activity plays an important role in controlling L-glutamate production from methanol, and that OAA precursor supply is not a major bottleneck for L-lysine overproduction by B. methanolicus.


Subject(s)
Bacillus/enzymology , Bacterial Proteins/metabolism , Homoserine Dehydrogenase/metabolism , Lysine/biosynthesis , Methanol/metabolism , Pyruvate Carboxylase/metabolism , Bacillus/genetics , Bacillus/metabolism , Bacterial Proteins/genetics , Cloning, Molecular , Fermentation , Glutamic Acid/metabolism , Homoserine Dehydrogenase/genetics , Hot Temperature , Methionine/metabolism , Molecular Sequence Data , Mutation , Pyruvate Carboxylase/genetics , Threonine/metabolism
15.
Appl Biochem Biotechnol ; 162(2): 391-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-19763899

ABSTRACT

Production of valuable chemicals from CO(2) is highly desired for the purpose of controlling CO(2) emission. Toward that, enzymatic reduction of CO(2) for the production of methanol appeared to be especially promising. That has been achieved by reversing the biological metabolic reaction pathways. However, hitherto, there has been little discussion on the thermodynamic feasibility of reversing such biological pathways. The reported yields of methanol have been generally very low under regular reaction conditions preferred by naturally evolved enzymes. The current work examines the sequential enzymatic conversion of CO(2) into methanol from a thermodynamic point of view with a focus on factors that control the reaction equilibrium. Our analysis showed that the enzymatic conversion of carbon dioxide is highly sensitive to the pH value of the reaction solution and, by conducting the reactions at low pHs (such as pH 6 or 5) and ionic strength, it is possible to shift the biological methanol metabolic reaction equilibrium constants significantly (by a factor of several orders of magnitude) to favor the synthesis of methanol.


Subject(s)
Carbon Dioxide/metabolism , Methanol/metabolism , Thermodynamics , Biocatalysis , Feasibility Studies , Hydrogen-Ion Concentration , Osmolar Concentration , Oxidation-Reduction
16.
Appl Environ Microbiol ; 75(3): 652-61, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19060158

ABSTRACT

Aspartokinase (AK) controls the carbon flow into the aspartate pathway for the biosynthesis of the amino acids l-methionine, l-threonine, l-isoleucine, and l-lysine. We report here the cloning of four genes (asd, encoding aspartate semialdehyde dehydrogenase; dapA, encoding dihydrodipicolinate synthase; dapG, encoding AKI; and yclM, encoding AKIII) of the aspartate pathway in Bacillus methanolicus MGA3. Together with the known AKII gene lysC, dapG and yclM form a set of three AK genes in this organism. Overexpression of dapG, lysC, and yclM increased l-lysine production in wild-type B. methanolicus strain MGA3 2-, 10-, and 60-fold (corresponding to 11 g/liter), respectively, without negatively affecting the specific growth rate. The production levels of l-methionine (less than 0.5 g/liter) and l-threonine (less than 0.1 g/liter) were low in all recombinant strains. The AK proteins were purified, and biochemical analyses demonstrated that they have similar V(max) values (between 47 and 58 micromol/min/mg protein) and K(m) values for l-aspartate (between 1.9 and 5.0 mM). AKI and AKII were allosterically inhibited by meso-diaminopimelate (50% inhibitory concentration [IC(50)], 0.1 mM) and by l-lysine (IC(50), 0.3 mM), respectively. AKIII was inhibited by l-threonine (IC(50), 4 mM) and by l-lysine (IC(50), 5 mM), and this enzyme was synergistically inhibited in the presence of both of these amino acids at low concentrations. The correlation between the impact on l-lysine production in vivo and the biochemical properties in vitro of the individual AK proteins is discussed. This is the first example of improving l-lysine production by metabolic engineering of B. methanolicus and also the first documentation of considerably increasing l-lysine production by overexpression of a wild-type AK.


Subject(s)
Aspartate Kinase/genetics , Aspartate Kinase/metabolism , Bacillus/enzymology , Bacillus/metabolism , Gene Dosage , Gene Expression , Lysine/biosynthesis , Animals , Aspartate Kinase/isolation & purification , Aspartate-Semialdehyde Dehydrogenase/genetics , Aspartate-Semialdehyde Dehydrogenase/metabolism , Aspartic Acid/metabolism , Bacillus/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Diaminopimelic Acid/pharmacology , Enzyme Inhibitors/pharmacology , Hydro-Lyases/genetics , Hydro-Lyases/metabolism , Inhibitory Concentration 50 , Kinetics , Methionine/biosynthesis , Molecular Sequence Data , Sequence Analysis, DNA , Threonine/pharmacology
17.
J Ind Microbiol Biotechnol ; 35(4): 283-90, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18193310

ABSTRACT

Optimizing the reactivity of cell coatings developed as biosensors or biocatalysts requires measurements of gene expression in the immobilized cells. To quantify and localize gene expression within a latex-based mercury biosensor, a plasmid, pmerGFP, was constructed, which contains the green fluorescent protein (GFP) gene under transcriptional control of the mercury resistance operon regulatory sequences. When cells containing this plasmid were exposed to mercuric chloride, GFP synthesis was induced and could be quantified by fluorescence. E. coli strain JM109 (pmerGFP) was mixed with SF091 latex (Rohm & Haas), Tween 20, and glycerol, and coated as an approximate 20-microm thick nanoporous adhesive coating on a polyester substrate. The cell coat was overlaid with a nanoporous topcoat of latex, Tween 20, and glycerol. Different fluorescent microspheres were used to mark the topcoat and cell coat layers of the coating. Upon exposure to mercury(II), cells within the coating were induced to synthesize GFP, and laser scanning confocal microscopy was used to quantify expression spatially within the cell coat. GFP expression in the coatings increased with increasing mercury concentration (2-20 microM), temperature (21-37 degrees C), and time of incubation (0-39 h). There was a gradient of GFP expression through the cell coat with expression higher near the topcoat-cell coat interface relative to the bottom of the cell coat. The topcoat thickness did not significantly affect GFP expression indicating that diffusion of mercury(II) and oxygen through the topcoat was not limiting.


Subject(s)
Biosensing Techniques/methods , Escherichia coli/metabolism , Gene Expression , Green Fluorescent Proteins/metabolism , Mercury/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cells, Immobilized/metabolism , Escherichia coli/genetics , Genes, Reporter , Green Fluorescent Proteins/genetics , Latex/chemistry , Microscopy, Confocal , Temperature , Time Factors
18.
Biotechnol Bioeng ; 99(5): 1065-73, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-17929324

ABSTRACT

Bacteria able to transfer electrons to conductive surfaces are of interest as catalysts in microbial fuel cells, as well as in bioprocessing, bioremediation, and corrosion. New procedures for immobilization of Geobacter sulfurreducens on graphite electrodes are described that allow routine, repeatable electrochemical analysis of cell-electrode interactions. Immediately after immobilizing G. sulfurreducens on electrodes, electrical current was obtained without addition of exogenous electron shuttles or electroactive polymers. Voltammetry and impedance analysis of pectin-immobilized bacteria transferring electrons to electrode surfaces could also be performed. Cyclic voltammetry of immobilized cells revealed voltage-dependent catalytic current similar to what is commonly observed with adsorbed enzymes, with catalytic waves centered at -0.15 V (vs. SHE). Electrodes maintained at +0.25 V (vs. SHE) initially produced 0.52 A/m(2) in the presence of acetate as the electron donor. Electrical Impedance Spectroscopy of coatings was also consistent with a catalytic mechanism, controlled by charge transfer rate. When electrodes were maintained at an oxidizing potential for 24 h, electron transfer to electrodes increased to 1.75 A/m(2). These observations of electron transfer by pectin-entrapped G. sulfurreducens appear to reflect native mechanisms used for respiration. The ability of washed G. sulfurreducens cells to immediately produce electrical current was consistent with the external surface of this bacterium possessing a pathway linking oxidative metabolism to extracellular electron transfer. This electrochemical activity of pectin-immobilized bacteria illustrates a strategy for preparation of catalytic electrodes and study of Geobacter under defined conditions.


Subject(s)
Geobacter/metabolism , Industrial Microbiology/methods , Electrochemistry , Electrodes , Ferric Compounds/metabolism , Graphite , Oxidation-Reduction , Paper , Pectins
19.
Biotechnol Prog ; 23(1): 2-17, 2007.
Article in English | MEDLINE | ID: mdl-17269663

ABSTRACT

Latex biocatalytic coatings containing approximately 50% by volume of microorganisms stabilize, concentrate and preserve cell viability on surfaces at ambient temperature. Coatings can be formed on a variety of surfaces, delaminated to generate stand-alone membranes or formulated as reactive inks for piezoelectric deposition of viable microbes. As the latex emulsion dries, cell preservation by partial desiccation occurs simultaneously with the formation of pores and adhesion to the substrate. The result is living cells permanently entrapped, surrounded by nanopores generated by partially coalesced polymer particles. Nanoporosity is essential for preserving microbial viability and coating reactivity. Cryo-SEM methods have been developed to visualize hydrated coating microstructure, confocal microscopy and dispersible coating methods have been developed to quantify the activity of the entrapped cells, and FTIR methods are being developed to determine the structure of vitrified biomolecules within and surrounding the cells in dry coatings. Coating microstructure, stability and reactivity are investigated using small patch or strip coatings where bacteria are concentrated 102- to 103-fold in 5-75 microm thick layers with pores formed by carbohydrate porogens. The carbohydrate porogens also function as osmoprotectants and are postulated to preserve microbial viability by formation of glasses inside the microbes during coat drying; however, the molecular mechanism of cell preservation by latex coatings is not known. Emerging applications include coatings for multistep oxidations, photoreactive coatings, stabilization of hyperthermophiles, environmental biosensors, microbial fuel cells, as reaction zones in microfluidic devices, or as very high intensity (>100 g.L-1 coating volume.h-1) industrial or environmental biocatalysts. We anticipate expanded use of nanoporous adhesive coatings for prokaryotic and eukaryotic cell preservation at ambient temperature and the design of highly reactive "living" paints and inks.


Subject(s)
Bacterial Physiological Phenomena , Cell Culture Techniques/methods , Coated Materials, Biocompatible/chemistry , Microfluidics/methods , Nanostructures/chemistry , Tissue Engineering/methods , Catalysis , Cell Proliferation , Cell Survival , Nanostructures/ultrastructure
20.
Biotechnol Prog ; 23(1): 124-30, 2007.
Article in English | MEDLINE | ID: mdl-17269679

ABSTRACT

Nonuniform light distribution is a fundamental limitation to biological hydrogen production by phototrophic bacteria. Numerous light distribution designs and culture conditions have been developed to reduce self-shading and nonuniform reactivity within bioreactors. In this study, highly concentrated (2.0 x 108 CFU/muL formulation) nongrowing Rhodopseudomonas palustris CGA009 were immobilized in thin, nanoporous, latex coatings. The coatings were used to study hydrogen production in an argon atmosphere as a function of coating composition, thickness, and light intensity. These coatings can be generated aerobically or anaerobically and are more reactive than an equivalent number of suspended or settled cells. Rhodopseudomonas palustris latex coatings remained active after hydrated storage for greater than 3 months in the dark and over 1 year when stored at -80 degrees C. The initial hydrogen production rate of the microphotobioreactors containing 6.25 cm2, 58.4 mum thick Rps. palustris latex coatings illuminated by 34.1 PAR mumol photons m-2 s-1 was 6.3 mmol H2 m-2 h-1 and had a final yield of 0.55 mol H2 m-2 in 120 h. A dispersible latex blend has been developed for direct comparison of the specific activity of settled, suspended, and immobilized Rps. palustris.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Coated Materials, Biocompatible/chemistry , Hydrogen/metabolism , Latex/chemistry , Photochemistry/methods , Rhodopseudomonas/metabolism , Cells, Immobilized , Light , Rhodopseudomonas/radiation effects , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL