Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Viruses ; 12(6)2020 06 10.
Article in English | MEDLINE | ID: mdl-32531939

ABSTRACT

"Rhizomania" of sugar beet is a soilborne disease complex comprised of beet necrotic yellow vein virus (BNYVV) and its plasmodiophorid vector, Polymyxa betae. Although BNYVV is considered the causal agent of rhizomania, additional viruses frequently accompany BNYVV in diseased roots. In an effort to better understand the virus cohort present in sugar beet roots exhibiting rhizomania disease symptoms, five independent RNA samples prepared from diseased beet seedlings reared in a greenhouse or from field-grown adult sugar beet plants and enriched for virus particles were subjected to RNAseq. In all but a healthy control sample, the technique was successful at identifying BNYVV and provided sequence reads of sufficient quantity and overlap to assemble > 98% of the published genome of the virus. Utilizing the derived consensus sequence of BNYVV, infectious RNA was produced from cDNA clones of RNAs 1 and 2. The approach also enabled the detection of beet soilborne mosaic virus (BSBMV), beet soilborne virus (BSBV), beet black scorch virus (BBSV), and beet virus Q (BVQ), with near-complete genome assembly afforded to BSBMV and BBSV. In one field sample, a novel virus sequence of 3682 nt was assembled with significant sequence similarity and open reading frame (ORF) organization to members within the subgenus Alphanecrovirus (genus Necrovirus; family Tombusviridae). Construction of a DNA clone based on this sequence led to the production of the novel RNA genome in vitro that was capable of inducing local lesion formation on leaves of Chenopodium quinoa. Additionally, two previously unreported satellite viruses were revealed in the study; one possessing weak similarity to satellite maize white line mosaic virus and a second possessing moderate similarity to satellite tobacco necrosis virus C. Taken together, the approach provides an efficient pipeline to characterize variation in the BNYVV genome and to document the presence of other viruses potentially associated with disease severity or the ability to overcome resistance genes used for sugar beet rhizomania disease management.


Subject(s)
Genome, Viral , Plant Diseases/parasitology , Plant Diseases/virology , Plant Viruses/genetics , Plasmodiophorida/virology , Satellite Viruses/genetics , Beta vulgaris/parasitology , Beta vulgaris/virology , Phylogeny , Plant Roots/parasitology , Plant Roots/virology , Plant Viruses/classification , Plant Viruses/isolation & purification , Satellite Viruses/classification , Satellite Viruses/isolation & purification , Sequence Analysis, RNA
2.
Viruses ; 10(3)2018 03 19.
Article in English | MEDLINE | ID: mdl-29562720

ABSTRACT

The RNA3 species of the beet necrotic yellow vein virus (BNYVV), a multipartite positive-stranded RNA phytovirus, contains the 'core' nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this 'core' sequence resides a conserved "coremin" motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3) possessing "coremin" at its 5' end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt) or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S.cerevisiae ribonuclease mutants identified the 5'-to-3' exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA). Substitution of the BNYVV-RNA3 'core' sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.


Subject(s)
Exoribonucleases/metabolism , Gene Expression Regulation, Viral , Plant Viruses/genetics , Plant Viruses/metabolism , RNA, Untranslated/genetics , Enzyme Activation , Exoribonucleases/genetics , Gene Expression , Gene Silencing , Host-Pathogen Interactions , Mutation , Plant Diseases/virology , RNA, Untranslated/chemistry , Transfection , Transformation, Genetic , Virus Replication
3.
Viruses ; 8(10)2016 10 04.
Article in English | MEDLINE | ID: mdl-27782046

ABSTRACT

Systemic movement of beet necrotic yellow vein virus (BNYVV) in Beta macrocarpa depends on viral RNA3, whereas in Nicotiana benthamiana this RNA is dispensable. RNA3 contains a coremin motif of 20 nucleotides essential for the stabilization of noncoding RNA3 (ncRNA3) and for long-distance movement in Beta species. Coremin mutants that are unable to accumulate ncRNA3 also do not achieve systemic movement in Beta species. A mutant virus carrying a mutation in the p14 viral suppressor of RNA silencing (VSR), unable to move long distances, can be complemented with the ncRNA3 in the lesion phenotype, viral RNA accumulation, and systemic spread. Analyses of the BNYVV VSR mechanism of action led to the identification of the RNA-dependent RNA polymerase 6 (RDR6) pathway as a target of the virus VSR and the assignment of a VSR function to the ncRNA3.


Subject(s)
Gene Silencing , Host-Pathogen Interactions , Immune Evasion , Plant Diseases/virology , Plant Viruses/pathogenicity , RNA, Untranslated/metabolism , RNA, Viral/metabolism , Chenopodiaceae , Genetic Complementation Test , Mutation , Nicotiana
4.
J Antimicrob Chemother ; 69(1): 34-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24003183

ABSTRACT

OBJECTIVES: Artesunate, a derivative of dihydroartemisinin, itself a product of artemisinin, inhibits the replication of cytomegalovirus in vitro. In vivo, artesunate undergoes rapid conversion into the active metabolite dihydroartemisinin. The in vitro stability of the compounds and the antiviral activity of dihydroartemisinin are of great concern for the interpretation of in vitro testing. The aim of the study was to measure artesunate conversion into dihydroartemisinin in culture medium and to evaluate the stability and antiviral activity of artemisinin derivatives, according to culture conditions. METHODS: Conversion of artesunate into dihydroartemisinin was measured in culture medium with or without fetal calf serum, in the presence or absence of fibroblast monolayers, at different times. The stability of artemisinin derivatives was determined in serum-enriched medium. Concentrations of each compound inhibiting viral DNA synthesis by 50% were determined in fibroblasts cultured in serum-free or serum-enriched medium, after addition of compound as a single dose or fractional doses. RESULTS: Conversion of artesunate into dihydroartemisinin in serum-free or serum-enriched medium was non-equimolar. The half-lives of artesunate, dihydroartemisinin and artemisinin were 10.3 ± 0.9, 5.2 ± 0.5 and 11.2 ± 1.2 h, respectively. Activity of dihydroartemisinin and artesunate was markedly reduced in serum-starved cells. Unexpectedly, dihydroartemisinin displayed a lower activity than artesunate. Addition of both compounds as fractional doses increased their activity. Artemisinin had no anticytomegaloviral activity. CONCLUSIONS: Artemisinin derivatives were shown to be unstable in vitro and their addition as fractional doses could partly compensate for this instability. Importantly, the cellular physiological condition was a determinant of their antiviral activity.


Subject(s)
Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Artemisinins/metabolism , Artemisinins/pharmacology , Cytomegalovirus/drug effects , Artesunate , Biotransformation , Culture Media/chemistry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...