Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 134(2)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36724275

ABSTRACT

AIMS: To investigate fungal diversity and biosurfactant-producing fungi in four oil-contaminated sites. METHODS AND RESULTS: Water and sediment samples were collected from four sites in Brittany (France), over two periods, in winter/spring and summer. Fungal diversity was investigated using a metagenetic approach targeting the ITS2 region. Surface-active compound production of 701 fungal isolates collected from these samples after direct plating or following enrichment was assessed using oil spreading and Parafilm M tests. Fungal communities were highly diverse and the main dominant fungal taxa were members of the Cladosporium, Penicillium, Pseudeurotium, Phoma, Aspergillus, and Trichoderma as well as Ochroconis, Fusicolla, and Aureobasidium genera in specific sites. A total of 179 isolates (25.5% of total isolates) were positive to at least one of the screening tests, while 105 were positive to both tests. Major genera among the positive isolates were Fusarium, Trichoderma, Candida, and Penicillium. Six isolates belonging to Aureobasidium pullulans, Mucor griseocyanus, Trichoderma citrinoviride, Trichoderma harzianum, Trichodermalongibrachiatum, and Diaporthe eres showed promising activities. CONCLUSIONS: The present study highlighted the fungal diversity of oil-contaminated environments and the fact that surface-active compound production is widespread in fungi originating from these habitats.


Subject(s)
Mitosporic Fungi , Penicillium , Trichoderma , Fungi , Surface-Active Agents , Aspergillus/genetics , Candida , Penicillium/genetics , Trichoderma/genetics
2.
Ecotoxicol Environ Saf ; 120: 215-22, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26092553

ABSTRACT

The potential impact of chemically and mechanically dispersed oil was assessed in a model fish of European coastal waters, the sea bass Dicentrarchus labrax. Juvenile sea bass were exposed for 48h to dispersed oil (mechanically and chemically) or dispersants alone. The impact of these exposure conditions was assessed using growth and immunity. The increase observed in polycyclic aromatic hydrocarbon metabolites in bile indicated oil contamination in the fish exposed to chemical and mechanical dispersion of oil without any significant difference between these two groups. After 28 days of exposure, no significant differences were observed in specific growth rate,apparent food conversion efficiency and daily feeding). Following the oil exposure, fish immunity was assessed by a challenge with Viral Nervous Necrosis Virus (VNNV). Fish mortality was observed over a 42 day period. After 12 days post-infection, cumulative mortality was significantly different between the control group (16% p≤0.05) and the group exposed to chemical dispersion of oil (30% p≤0.05). However, at the end of the experiment, no significant difference was recorded in cumulative mortality or in VNNV antibodies secreted in fish in responses to the treatments. These data suggested that in our experimental condition, following the oil exposure, sea bass growth was not affected whereas an impact on immunity was observed during the first days. However, this effect on the immune system did not persist over time.


Subject(s)
Bass/growth & development , Bass/immunology , Environmental Exposure/analysis , Immune System/drug effects , Water Pollutants, Chemical/toxicity , Animals , Bass/virology , Bile/chemistry , Muscle, Skeletal/chemistry , Petroleum/toxicity , Petroleum Pollution , Polycyclic Aromatic Hydrocarbons/toxicity , Seawater/analysis
3.
Aquat Toxicol ; 75(3): 191-201, 2005 Nov 10.
Article in English | MEDLINE | ID: mdl-16221498

ABSTRACT

Despite the extensive transport of chemicals at sea, there is current lack of knowledge of the fate and effects of many of them on the marine biota. The current regulation that follows the GESAMP-MARPOL classification is mainly based on ecotoxicity assessment from fresh water based studies. Repetitive spills in marine coastal environment from tanker ship loaded with several thousand tonnes of chemicals raised concern about whether the existing freshwater data location can be used to predict the behaviour and the environmental effects of contaminants in marine surroundings. There is a general lack of information of the fate of chemicals at sea. A deviating pattern in marine environment from that in freshwater may have significant consequences for the counteracting actions taken to fight the spill, on staff working on the site of spill as well as on marine life present in the vicinity of the accident. In the present article, an environmental effect study of styrene was conducted as part of the ECOPEL program. We report some biological effects of styrene in laboratory-exposed marine organisms. Styrene was continuously supplied at a nominal concentration of 2mg L(-1) over 7 days to both mussels (Mytilus edulis) and fish (Symphodus mellops). At the end of this period, DNA damage was assessed by the Comet assay performed on blood (fish) and haemolymph (mussel) cells. In mussels, the lysosomal membrane stability was additionally assessed by the neutral red retention time assay (NRRT). Significant biological responses were observed over the studied period in both organisms with these two tests. Hence, the results favour the use of a biomarker-based approach to assess the health conditions in case of spill.


Subject(s)
Bivalvia/chemistry , Blood Cells/drug effects , Perciformes/blood , Seawater/chemistry , Styrene/toxicity , Toxicology/methods , Water Pollutants, Chemical/toxicity , Animals , Bivalvia/genetics , Comet Assay , Lysosomes/drug effects , Neutral Red , Perciformes/genetics , Toxicology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...