Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 921: 171162, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38401736

ABSTRACT

Nonindigenous marine species are impacting the integrity of marine ecosystems worldwide. The invasion rate is increasing, and vessel traffic, the most significant human-assisted transport pathway for marine organisms, is predicted to double by 2050. The ability to predict the transfer of marine species by international and domestic maritime traffic is needed to develop cost-effective proactive and reactive interventions that minimise introduction, establishment and spread of invasive species. However, despite several decades of research into vessel-mediated species transfers, some important knowledge gaps remain, leading to significant uncertainty in model predictions, often limiting their use in decision making and management planning. In this review, we discuss the sequential ecological process underlying human-assisted biological invasions and adapt it in a marine context. This process includes five successive stages: entrainment, transport, introduction, establishment, and the subsequent spread. We describe the factors that influence an organism's progression through these stages in the context of maritime vessel movements and identify key knowledge gaps that limit our ability to quantify the rate at which organisms successfully pass through these stages. We then highlight research priorities that will address these knowledge gaps and improve our capability to manage biosecurity risks at local, national and international scales. We identified four major data and knowledge gaps: (1) quantitative rates of entrainment of organisms by vessels; (2) the movement patterns of vessel types lacking maritime location devices; (3) quantifying the release (introduction) of organisms as a function of vessel behaviour (e.g. time spent at port); and (4) the influence of a species' life history on establishment success, for a given magnitude of propagule pressure. We discuss these four research priorities and how they can be addressed in collaboration with industry partners and stakeholders to improve our ability to predict and manage vessel-mediated biosecurity risks over the coming decades.


Subject(s)
Ecosystem , Introduced Species , Humans , Aquatic Organisms , Industry , Uncertainty
2.
Sci Rep ; 10(1): 1581, 2020 01 31.
Article in English | MEDLINE | ID: mdl-32005953

ABSTRACT

Predicting the effects of invasive ecosystem engineering species in new bioregions has proved elusive. In part this is because separating biological effects from purely physical mechanisms has been little studied and yet could help predict potentially damaging bioinvasions. Here we tested the effects of a large bio-engineering fanworm Sabella spallanzanii (Sabella) versus worm-like structures (mimics) on gas and nutrient fluxes in a marine soft bottom sediment. Experimental plots of sediment in Hauraki Gulf (New Zealand) were used to test the hypothesis that ecosystem engineers negatively influence benthic ecosystem function through autogenic mechanisms, facilitating activity by biofouling organisms and competitive exclusion of native infauna. Enhanced physical structure associated with Sabella and mimics increased nitrogen fluxes, community metabolism and reduced denitrification from 23 µmol m-2 h-1 to zero at densities greater than 25 m2. Sabella plots on average had greater respiration (29%), NH4 release (33%), and greater NO3 release (52%) compared to mimics, suggesting allogenic (biological) mechanisms occur, but play a secondary role to autogenic (physical) mechanisms. The dominance of autogenic mechanisms indicates that bio-engineers are likely to cause significant impacts when established, regardless of fundamental differences in recipient regions or identity of the introduced bio-engineer. In the case of Sabella spallanzanii, compromised denitrification has the potential to tip the balance of net solute and gas exchanges and cause further ecological degradation in an already eutrophic system.


Subject(s)
Biodegradation, Environmental , Bioengineering/methods , Biofouling , Ecosystem , Introduced Species , Nitrogen/metabolism , Animals , Aquatic Organisms/metabolism , Biofouling/prevention & control , Geologic Sediments , Oceans and Seas , Polychaeta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL