Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 54(4): 2705-2718, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37735300

ABSTRACT

Endophytic fungi constitute a major part of the still unexplored fungal diversity and have gained interest as new biological sources of natural active compounds, including enzymes. Endophytic fungi were isolated from soybean leaves and initially screened on agar plates for the production of CMCase (carboxymethylcellulase), xylanase, amylase and protease. The highest Enzymatic Indexes (IE) were verified for xylanase (2.14 and 1.31) with the fungi M6-A6P5F2 and M12-A5P3F1.2 and CMCase (1.92 and 1.62) with the fungi M13-A9P2F1 and M12-A5P3F1.2, respectively. The production of xylanase and CMCase by the selected fungi was evaluated in submerged cultivation using beechwood xylan and carboxymethylcellulose (CMC), as well as sugarcane straw and bagasse in different ratios as carbon sources. Both types of lignocellulosic biomass proved to be good inducers of enzymatic activity. The best xylanase producer among the isolates was identified as Colletotrichum boninense. With this fungus, the highest xylanase activity was obtained with a sugarcane straw-bagasse mixture in a 50:50 ratio (383.63 U mL-1), a result superior to that obtained with the use of beechwood xylan (296.65 U mL-1). Regardingthe kinetic behavior of the crude xylanase, there was found optimal pH of 5.0 and optimal temperatures of 50°C and 60°C. At 40°C and 50°C, xylanase retained 87% and 76% of its initial catalytic activity, respectively. These results bring new perspectives on bioprospecting endophytic fungi for the production of enzymes, mainly xylanase, as well as the exploitation of agro-industrial by-products, such as sugarcane straw and bagasse.


Subject(s)
Saccharum , Xylans , Saccharum/microbiology , Biomass , Fungi
2.
World J Microbiol Biotechnol ; 29(5): 923-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23296917

ABSTRACT

The compound 3-nitropropionic acid is a potent neurotoxic agent in animals and well-known as a potent inhibitor of Mycobacterium tuberculosis. In this research, we were able to extract this compound from the endophytic fungus, Phomopsis longicolla (FJ62759), isolated from Trichilia elegans A. JUSS ssp. elegans. The aim of this study was the isolation of secondary metabolites produced by P. longicolla, the chemical identification of these compounds and evaluation of their antimicrobial and insecticidal activity. To accomplish these goals, the fungus was cultured in BD broth for 25 days without agitation at 28 °C, and then the broth was separated from the mycelium. The supernatant was partitioned with dichloromethane (CH2Cl2), ethyl acetate (EtOAc), and butanol (BuOH) solvents resulting in 3 extracts. However, only the EtOAc extract was used for fractionation and chemical identification because it had the greatest mass. After common chromatographic procedures, the fractions were analyzed by nuclear magnetic resonance to elucidate the chemical components. This procedure resulted in the identification of 3-nitropropionic acid in the D fraction. Evaluation of the insecticidal and antimicrobial activity of this compound has been accomplished, and the results indicate good inhibition of the citrus pathogen Guignardia citricarpa and cocoa pathogen Moniliophthora perniciosa and slight inhibition of the human bacterial pathogens Micrococcus luteus, Salmonella typhi and slight inhibition of phytopathogenic bacteria Xanthomonas axonopodis pv. phaseoli. The evaluation of insecticide activity did not show mortality of the Diatraea saccharalis larvae by the metabolite 3-nitropropionic acid in the D fraction. The results suggest that P. longicolla is a bioactive metabolic producing endophytic fungus with biotechnological properties.


Subject(s)
Anti-Infective Agents/metabolism , Ascomycota/metabolism , Endophytes/metabolism , Insecticides/metabolism , Meliaceae/microbiology , Nitro Compounds/metabolism , Propionates/metabolism , Animals , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Ascomycota/chemistry , Ascomycota/isolation & purification , Bacteria/drug effects , Basidiomycota/drug effects , Endophytes/chemistry , Endophytes/isolation & purification , Insecticides/chemistry , Insecticides/pharmacology , Lepidoptera/drug effects , Molecular Structure , Nitro Compounds/chemistry , Nitro Compounds/pharmacology , Propionates/chemistry , Propionates/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...