Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Elife ; 112022 05 20.
Article in English | MEDLINE | ID: mdl-35593695

ABSTRACT

Penicillin and related antibiotics disrupt cell wall synthesis in bacteria causing the downstream misactivation of cell wall hydrolases called autolysins to induce cell lysis. Despite the clinical importance of this phenomenon, little is known about the factors that control autolysins and how penicillins subvert this regulation to kill cells. In the pathogen Streptococcus pneumoniae (Sp), LytA is the major autolysin responsible for penicillin-induced bacteriolysis. We recently discovered that penicillin treatment of Sp causes a dramatic shift in surface polymer biogenesis in which cell wall-anchored teichoic acids (WTAs) increase in abundance at the expense of lipid-linked teichoic acids (LTAs). Because LytA binds to both species of teichoic acids, this change recruits the enzyme to its substrate where it cleaves the cell wall and elicits lysis. In this report, we identify WhyD (SPD_0880) as a new factor that controls the level of WTAs in Sp cells to prevent LytA misactivation and lysis during exponential growth . We show that WhyD is a WTA hydrolase that restricts the WTA content of the wall to areas adjacent to active peptidoglycan (PG) synthesis. Our results support a model in which the WTA tailoring activity of WhyD during exponential growth directs PG remodeling activity required for proper cell elongation in addition to preventing autolysis by LytA.


Subject(s)
Bacteriolysis , Streptococcus pneumoniae , Cell Wall/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Penicillins/pharmacology , Polymers/metabolism , Streptococcus pneumoniae/metabolism , Teichoic Acids/metabolism
2.
J Bacteriol ; 204(2): e0053321, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34871030

ABSTRACT

The WalR-WalK two component signaling system in Bacillus subtilis functions in the homeostatic control of the peptidoglycan (PG) hydrolases LytE and CwlO that are required for cell growth. When the activities of these enzymes are low, WalR activates transcription of lytE and cwlO and represses transcription of iseA, a secreted inhibitor of LytE. Conversely, when PG hydrolase activity is too high, WalR-dependent expression of lytE and cwlO is reduced and iseA is derepressed. In a screen for additional factors that regulate this signaling pathway, we discovered that overexpression of the membrane-anchored PG deacetylase PdaC increases WalR-dependent gene expression. We show that increased expression of PdaC, but not catalytic mutants, prevents cell wall cleavage by both LytE and CwlO, explaining the WalR activation. Importantly, the pdaC gene, like iseA, is repressed by active WalR. We propose that derepression of pdaC when PG hydrolase activity is too high results in modification of the membrane-proximal layers of the PG, protecting the wall from excessive cleavage by the membrane-tethered CwlO. Thus, the WalR-WalK system homeostatically controls the levels and activities of both elongation-specific cell wall hydrolases. IMPORTANCE Bacterial growth and division requires a delicate balance between the synthesis and remodeling of the cell wall exoskeleton. How bacteria regulate the potentially autolytic enzymes that remodel the cell wall peptidoglycan remains incompletely understood. Here, we provide evidence that the broadly conserved WalR-WalK two-component signaling system homeostatically controls both the levels and activities of two cell wall hydrolases that are critical for cell growth.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/genetics , Bacterial Proteins/genetics , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism , Signal Transduction/genetics , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/enzymology , Cell Wall/metabolism , Gene Expression Regulation, Bacterial , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Signal Transduction/physiology
3.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Article in English | MEDLINE | ID: mdl-34732571

ABSTRACT

Many pathogenic bacteria are encased in a layer of capsular polysaccharide (CPS). This layer is important for virulence by masking surface antigens, preventing opsonophagocytosis, and avoiding mucus entrapment. The bacterial tyrosine kinase (BY-kinase) regulates capsule synthesis and helps bacterial pathogens to survive different host niches. BY-kinases autophosphorylate at the C-terminal tyrosine residues upon external stimuli, but the role of phosphorylation is still unclear. Here, we report that the BY-kinase CpsCD is required for growth in Streptococcus pneumoniae Cells lacking a functional cpsC or cpsD accumulated low molecular weight CPS and lysed because of the lethal sequestration of the lipid carrier undecaprenyl phosphate, resulting in inhibition of peptidoglycan (PG) synthesis. CpsC interacts with CpsD and the polymerase CpsH. CpsD phosphorylation reduces the length of CPS polymers presumably by controlling the activity of CpsC. Finally, pulse-chase experiments reveal the spatiotemporal coordination between CPS and PG synthesis. This coordination is dependent on CpsC and CpsD. Together, our study provides evidence that BY-kinases regulate capsule polymer length by fine-tuning CpsC activity through autophosphorylation.


Subject(s)
Bacterial Capsules/metabolism , Bacterial Proteins/metabolism , Galactosyltransferases/metabolism , Polysaccharides, Bacterial/metabolism , Protein-Tyrosine Kinases/metabolism , Streptococcus pneumoniae/enzymology , Bacterial Proteins/genetics , Galactosyltransferases/genetics , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development
4.
Elife ; 82019 12 06.
Article in English | MEDLINE | ID: mdl-31808740

ABSTRACT

Bacterial cells are encased in a peptidoglycan (PG) exoskeleton that protects them from osmotic lysis and specifies their distinct shapes. Cell wall hydrolases are required to enlarge this covalently closed macromolecule during growth, but how these autolytic enzymes are regulated remains poorly understood. Bacillus subtilis encodes two functionally redundant D,L-endopeptidases (CwlO and LytE) that cleave peptide crosslinks to allow expansion of the PG meshwork during growth. Here, we provide evidence that the essential and broadly conserved WalR-WalK two component regulatory system continuously monitors changes in the activity of these hydrolases by sensing the cleavage products generated by these enzymes and modulating their levels and activity in response. The WalR-WalK pathway is conserved among many Gram-positive pathogens where it controls transcription of distinct sets of PG hydrolases. Cell wall remodeling in these bacteria may be subject to homeostatic control mechanisms similar to the one reported here.


Subject(s)
Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Cell Wall/metabolism , Signal Transduction , Endopeptidases/metabolism , Gene Expression Regulation, Bacterial , Gene Expression Regulation, Enzymologic , Hydrolysis , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Peptidoglycan/metabolism
5.
Elife ; 82019 04 09.
Article in English | MEDLINE | ID: mdl-30964003

ABSTRACT

Penicillin and related antibiotics disrupt cell wall synthesis to induce bacteriolysis. Lysis in response to these drugs requires the activity of cell wall hydrolases called autolysins, but how penicillins misactivate these deadly enzymes has long remained unclear. Here, we show that alterations in surface polymers called teichoic acids (TAs) play a key role in penicillin-induced lysis of the Gram-positive pathogen Streptococcus pneumoniae (Sp). We find that during exponential growth, Sp cells primarily produce lipid-anchored TAs called lipoteichoic acids (LTAs) that bind and sequester the major autolysin LytA. However, penicillin-treatment or prolonged stationary phase growth triggers the degradation of a key LTA synthase, causing a switch to the production of wall-anchored TAs (WTAs). This change allows LytA to associate with and degrade its cell wall substrate, thus promoting osmotic lysis. Similar changes in surface polymer assembly may underlie the mechanism of antibiotic- and/or growth phase-induced lysis for other important Gram-positive pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteriolysis/drug effects , Biosynthetic Pathways/drug effects , Penicillins/pharmacology , Streptococcus pneumoniae/drug effects , Teichoic Acids/biosynthesis
6.
Article in English | MEDLINE | ID: mdl-30323039

ABSTRACT

New antibiotics are needed to combat the growing problem of resistant bacterial infections. An attractive avenue toward the discovery of such next-generation therapies is to identify novel inhibitors of clinically validated targets, like cell wall biogenesis. We have therefore developed a pathway-directed whole-cell screen for small molecules that block the activity of the Rod system of Escherichia coli This conserved multiprotein complex is required for cell elongation and the morphogenesis of rod-shaped bacteria. It is composed of cell wall synthases and membrane proteins of unknown function that are organized by filaments of the actin-like MreB protein. Our screen takes advantage of the conditional essentiality of the Rod system and the ability of the beta-lactam mecillinam (also known as amdinocillin) to cause a toxic malfunctioning of the machinery. Rod system inhibitors can therefore be identified as molecules that promote growth in the presence of mecillinam under conditions permissive for the growth of Rod- cells. A screen of ∼690,000 compounds identified 1,300 compounds that were active against E. coli Pathway-directed screening of a majority of this subset of compounds for Rod inhibitors successfully identified eight analogs of the MreB antagonist A22. Further characterization of the A22 analogs identified showed that their antibiotic activity under conditions where the Rod system is essential was strongly correlated with their ability to suppress mecillinam toxicity. This result combined with those from additional biological studies reinforce the notion that A22-like molecules are relatively specific for MreB and suggest that the lipoprotein transport factor LolA is unlikely to be a physiologically relevant target as previously proposed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cell Wall/metabolism , Escherichia coli/drug effects , Peptidoglycan/metabolism , Amdinocillin/pharmacology , Amdinocillin/toxicity , Bacterial Proteins/antagonists & inhibitors , Cytoskeletal Proteins/antagonists & inhibitors , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/genetics , Escherichia coli Proteins/antagonists & inhibitors , Microbial Sensitivity Tests , Penicillin-Binding Proteins/antagonists & inhibitors , Penicillin-Binding Proteins/metabolism
7.
Proc Natl Acad Sci U S A ; 115(11): 2812-2817, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29487215

ABSTRACT

Most bacterial cells are surrounded by an essential cell wall composed of the net-like heteropolymer peptidoglycan (PG). Growth and division of bacteria are intimately linked to the expansion of the PG meshwork and the construction of a cell wall septum that separates the nascent daughter cells. Class A penicillin-binding proteins (aPBPs) are a major family of PG synthases that build the wall matrix. Given their central role in cell wall assembly and importance as drug targets, surprisingly little is known about how the activity of aPBPs is controlled to properly coordinate cell growth and division. Here, we report the identification of MacP (SPD_0876) as a membrane-anchored cofactor of PBP2a, an aPBP synthase of the Gram-positive pathogen Streptococcus pneumoniae We show that MacP localizes to the division site of S. pneumoniae, forms a complex with PBP2a, and is required for the in vivo activity of the synthase. Importantly, MacP was also found to be a substrate for the kinase StkP, a global cell cycle regulator. Although StkP has been implicated in controlling the balance between the elongation and septation modes of cell wall synthesis, none of its substrates are known to modulate PG synthetic activity. Here we show that a phosphoablative substitution in MacP that blocks StkP-mediated phosphorylation prevents PBP2a activity without affecting the MacP-PBP2a interaction. Our results thus reveal a direct connection between PG synthase function and the control of cell morphogenesis by the StkP regulatory network.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/enzymology , Coenzymes/metabolism , Penicillin-Binding Proteins/metabolism , Streptococcus pneumoniae/enzymology , Bacterial Proteins/genetics , Cell Division , Cell Wall/genetics , Cell Wall/metabolism , Coenzymes/genetics , Gene Expression Regulation, Bacterial , Penicillin-Binding Proteins/genetics , Phosphorylation , Streptococcus pneumoniae/cytology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism
8.
mBio ; 8(5)2017 09 12.
Article in English | MEDLINE | ID: mdl-28900025

ABSTRACT

The bacterial phage shock protein system (Psp) is a conserved extracytoplasmic stress response that is essential for the virulence of some pathogens, including Yersinia enterocolitica It is induced by events that can compromise inner membrane (IM) integrity, including the mislocalization of outer membrane pore-forming proteins called secretins. In the absence of the Psp system, secretin mislocalization permeabilizes the IM and causes rapid cell death. The Psp proteins PspB and PspC form an integral IM complex with two independent roles. First, the PspBC complex is required to activate the Psp response in response to some inducing triggers, including a mislocalized secretin. Second, PspBC are sufficient to counteract mislocalized secretin toxicity. Remarkably, secretin mislocalization into the IM induces psp gene expression without significantly affecting the expression of any other genes. Furthermore, psp null strains are killed by mislocalized secretins, whereas no other null mutants have been found to share this specific secretin sensitivity. This suggests an exquisitely specific relationship between secretins and the Psp system, but there has been no mechanism described to explain this. In this study, we addressed this deficiency by using a coimmunoprecipitation approach to show that the Psp proteins form a specific complex with mislocalized secretins in the Y. enterocolitica IM. Importantly, analysis of different secretin mutant proteins also revealed that this interaction is absolutely dependent on a secretin adopting a multimeric state. Therefore, the Psp system has evolved with the ability to detect and detoxify dangerous secretin multimers while ignoring the presence of innocuous monomers.IMPORTANCE The phage shock protein (Psp) response has been linked to important phenotypes in diverse bacteria, including those related to antibiotic resistance, biofilm formation, and virulence. This has generated widespread interest in understanding various aspects of its function. Outer membrane secretin proteins are essential components of export systems required for the virulence of many bacterial pathogens. However, secretins can mislocalize into the inner membrane, and this induces the Psp response in a highly specific manner and kills Psp-defective strains with similar specificity. There has been no mechanism described to explain this exquisitely specific relationship between secretins and the Psp system. Therefore, this study provides a critical advance by discovering that Psp effector proteins form a complex with secretins in the Yersinia enterocolitica inner membrane. Remarkably, this interaction is absolutely dependent on a secretin adopting its multimeric state. Therefore, the Psp system detects and detoxifies dangerous secretin multimers, while ignoring the presence of innocuous secretin monomers.


Subject(s)
Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/genetics , Heat-Shock Proteins/genetics , Secretin/metabolism , Yersinia enterocolitica/genetics , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Heat-Shock Proteins/metabolism , Loss of Function Mutation , Phenotype , Protein Binding , Secretin/genetics , Stress, Physiological , Transcription Factors/metabolism , Virulence , Yersinia enterocolitica/metabolism
9.
J Bacteriol ; 198(24): 3367-3378, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27698088

ABSTRACT

The phage shock protein (Psp) system is a widely conserved cell envelope stress response that is essential for the virulence of some bacteria, including Yersinia enterocolitica Recruitment of PspA by the inner membrane PspB-PspC complex characterizes the activated state of this response. The PspB-PspC complex has been proposed to be a stress-responsive switch, changing from an OFF to an ON state in response to an inducing stimulus. In the OFF state, PspA cannot access its binding site in the C-terminal cytoplasmic domain of PspC (PspCCT), because this site is bound to PspB. PspC has another cytoplasmic domain at its N-terminal end (PspCNT), which has been thought to play a role in maintaining the OFF state, because its removal causes constitutive activation. However, until now, this role has proved recalcitrant to experimental investigation. Here, we developed a combination of approaches to investigate the role of PspCNT in Y. enterocolitica Pulldown assays provided evidence that PspCNT mediates the interaction of PspC with the C-terminal cytoplasmic domain of PspB (PspBCT) in vitro Furthermore, site-specific oxidative cross-linking suggested that a PspCNT-PspBCT interaction occurs only under noninducing conditions in vivo Additional experiments indicated that mutations in pspC might cause constitutive activation by compromising this PspCNT binding site or by causing a conformational disturbance that repositions PspCNT in vivo These findings have provided the first insight into the regulatory function of the N-terminal cytoplasmic domain of PspC, revealing that its ability to participate in an inhibitory complex is essential to silencing the Psp response. IMPORTANCE: The phage shock protein (Psp) response has generated widespread interest because it is linked to important phenotypes, including antibiotic resistance, biofilm formation, and virulence in a diverse group of bacteria. Therefore, achieving a comprehensive understanding of how this response is controlled at the molecular level has obvious significance. An integral inner membrane protein complex is believed to be a critical regulatory component that acts as a stress-responsive switch, but some essential characteristics of the switch states are poorly understood. This study provides an important advance by uncovering a new protein interaction domain within this membrane protein complex that is essential to silencing the Psp response in the absence of an inducing stimulus.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Yersinia enterocolitica/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gene Silencing , Mutation , Protein Binding , Protein Domains , Yersinia enterocolitica/chemistry , Yersinia enterocolitica/genetics
10.
Annu Rev Microbiol ; 70: 83-101, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27297125

ABSTRACT

The phage shock protein (Psp) system was identified as a response to phage infection in Escherichia coli, but rather than being a specific response to a phage, it detects and mitigates various problems that could increase inner-membrane (IM) permeability. Interest in the Psp system has increased significantly in recent years due to appreciation that Psp-like proteins are found in all three domains of life and because the bacterial Psp response has been linked to virulence and other important phenotypes. In this article, we summarize our current understanding of what the Psp system detects and how it detects it, how four core Psp proteins form a signal transduction cascade between the IM and the cytoplasm, and current ideas that explain how the Psp response keeps bacterial cells alive. Although recent studies have significantly improved our understanding of this system, it is an understanding that is still far from complete.


Subject(s)
Bacteria/metabolism , Bacteria/virology , Bacterial Proteins/metabolism , Bacteriophages/physiology , Bacteria/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Signal Transduction
11.
J Biol Chem ; 290(18): 11417-30, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25802329

ABSTRACT

The bacterial phage shock protein (Psp) system is a highly conserved cell envelope stress response required for virulence in Yersinia enterocolitica and Salmonella enterica. In non-inducing conditions the transcription factor PspF is inhibited by an interaction with PspA. In contrast, PspA associates with the cytoplasmic membrane proteins PspBC during inducing conditions. This has led to the proposal that PspBC exists in an OFF state, which cannot recruit PspA, or an ON state, which can. However, nothing was known about the difference between these two states. Here, we provide evidence that it is the C-terminal domain of Y. enterocolitica PspC (PspC(CT)) that interacts directly with PspA, both in vivo and in vitro. Site-specific photocross-linking revealed that this interaction occurred only during Psp-inducing conditions in vivo. Importantly, we have also discovered that PspC(CT) can interact with the C-terminal domain of PspB (PspC(CT)·PspB(CT)). However, the PspC(CT)·PspB(CT) and PspC(CT)·PspA interactions were mutually exclusive in vitro. Furthermore, in vivo, PspC(CT) contacted PspB(CT) in the OFF state, whereas it contacted PspA in the ON state. These findings provide the first description of the previously proposed PspBC OFF and ON states and reveal that the regulatory switch is centered on a PspC(CT) partner-switching mechanism.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Heat-Shock Proteins/chemistry , Heat-Shock Proteins/metabolism , Salmonella enterica/cytology , Salmonella enterica/metabolism , Stress, Physiological , Yersinia enterocolitica/cytology , Yersinia enterocolitica/metabolism , Cytoplasm/metabolism , Models, Molecular , Protein Binding , Protein Structure, Tertiary , Salmonella enterica/physiology , Signal Transduction , Yersinia enterocolitica/physiology
12.
Virulence ; 5(8): 835-51, 2014.
Article in English | MEDLINE | ID: mdl-25603429

ABSTRACT

The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.


Subject(s)
Bacteria/genetics , Bacteria/pathogenicity , Cell Membrane/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Bacterial , Stress, Physiological , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Virulence/genetics
13.
Article in English | MEDLINE | ID: mdl-23087910

ABSTRACT

The cell envelope of pathogenic bacteria is a barrier against host environmental conditions and immunity molecules, as well as the site where many virulence factors are assembled. Extracytoplasmic stress responses (ESRs) have evolved to help maintain its integrity in conditions where it might be compromised. These ESRs also have important links to the production of envelope-associated virulence systems by the bacteria themselves. One such virulence factor is the type III secretion system (T3SS), the first example of which was provided by the pathogenic Yersinia. This article reviews the reported links between four different ESRs and T3SS function in Yersinia. Components of three of these ESRs affect the function and/or regulation of two different T3SSs. The response regulator of the Rcs ESR is involved in positive regulation of the Ysa-Ysp T3SS found in the highly pathogenic 1B biogroup of Y. enterocolitica. Conversely, the response regulator of the Y. pseudotuberculosis Cpx ESR can down-regulate production of the Ysc-Yop T3SS, and at least one other envelope virulence factor (invasin), by direct repression. Also in Y. pseudotuberculosis, there is some evidence suggesting that an intact RpoE ESR might be important for normal Yersinia outer proteins (Yop) production and secretion. Besides these regulatory links between ESRs and T3SSs, perhaps the most striking connection between T3SS function and an ESR is that between the phage shock protein (Psp) and Ysc-Yop systems of Y. enterocolitica. The Psp response does not affect the regulation or function of the Ysc-Yop system. Instead, Ysc-Yop T3SS production induces the Psp system, which then mitigates T3SS-induced envelope stress. Consequently, the Y. enterocolitica Psp system is essential when the Ysc-Yop T3SS is produced.


Subject(s)
Bacterial Secretion Systems , Stress, Physiological , Yersinia enterocolitica/physiology , Yersinia pseudotuberculosis/physiology , Gene Expression Regulation, Bacterial , Signal Transduction , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Yersinia pseudotuberculosis/genetics , Yersinia pseudotuberculosis/metabolism
14.
J Bacteriol ; 194(23): 6548-59, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23024349

ABSTRACT

Phage shock proteins B (PspB) and C (PspC) are integral cytoplasmic membrane proteins involved in inducing the Yersinia enterocolitica Psp stress response. A fundamental aspect of these proteins that has not been studied in depth is their membrane topologies. Various in silico analyses universally predict that PspB is a bitopic membrane protein with the C terminus inside. However, similar analyses yield conflicting predictions for PspC: a bitopic membrane protein with the C terminus inside, a bitopic membrane protein with the C terminus outside, or a polytopic protein with both termini inside. Previous studies of Escherichia coli PspB-LacZ and PspC-PhoA fusion proteins supported bitopic topologies, with the PspB C terminus inside and the PspC C terminus outside. Here we have used a series of independent approaches to determine the membrane topologies of PspB and PspC in Y. enterocolitica. Our data support the predicted arrangement of PspB, with its C terminus in the cytoplasm. In contrast, data from multiple independent approaches revealed that both termini of PspC are located in the cytoplasm. Additional experiments suggested that the C terminus of PspC might be the recognition site for the FtsH protease and an interaction interface with PspA, both of which would be compatible with its newly proposed cytoplasmic location. This unexpected arrangement of PspC allows a new model for events underlying activation of the Psp response, which is an excellent fit with observations from various previous studies.


Subject(s)
Gene Expression Regulation, Bacterial , Membrane Proteins/metabolism , Stress, Physiological , Transcription Factors/metabolism , Yersinia enterocolitica/genetics , Yersinia enterocolitica/metabolism , Bacterial Proteins/metabolism , Heat-Shock Proteins/metabolism , Models, Biological , Peptide Hydrolases/metabolism , Protein Binding , Yersinia enterocolitica/virology
15.
J Bacteriol ; 193(20): 5747-58, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21856846

ABSTRACT

The Yersinia enterocolitica phage shock protein (Psp) stress response is essential for virulence and for survival during the mislocalization of outer membrane secretin proteins. The cytoplasmic membrane proteins PspB and PspC are critical components involved in regulating psp gene expression and in facilitating tolerance to secretin-induced stress. Interactions between PspB and PspC monomers might be important for their functions and for PspC stability. However, little is known about these interactions and there are conflicting reports about the ability of PspC to dimerize. To address this, we have used a combination of independent approaches to systematically analyze the ability of PspB and PspC to form dimers in vivo. Formaldehyde cross-linking of the endogenous chromosomally encoded proteins in Y. enterocolitica revealed discrete complexes corresponding in size to PspB-PspB, PspC-PspC, and PspB-PspC. Bacterial two-hybrid analysis corroborated these protein associations, but an important limitation of the two-hybrid approach was uncovered for PspB. A series of PspB and PspC proteins with unique cysteine substitutions at various positions was constructed. In vivo disulfide cross-linking experiments with these proteins further supported close association between PspB and PspC monomers. Detailed cysteine substitution analysis of predicted leucine zipper-like amphipathic helices in both PspB and PspC suggested that their hydrophobic faces could form homodimerization interfaces.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Transcription Factors/chemistry , Transcription Factors/metabolism , Yersinia enterocolitica/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Dimerization , Gene Expression Regulation, Bacterial , Membrane Proteins/genetics , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Transcription Factors/genetics , Yersinia enterocolitica/chemistry , Yersinia enterocolitica/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...