Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 13: 1020133, 2022.
Article in English | MEDLINE | ID: mdl-36532717

ABSTRACT

Microbial communities form an important symbiotic ecosystem within humans and have direct effects on health and well-being. Numerous exogenous factors including airborne triggers, diet, and drugs impact these established, but fragile communities across the human lifespan. Crosstalk between the mucosal microbiota and the immune system as well as the gut-lung axis have direct correlations to immune bias that may promote chronic diseases like asthma. Asthma initiation and pathogenesis are multifaceted and complex with input from genetic, epigenetic, and environmental components. In this review, we summarize and discuss the role of the airway microbiome in asthma, and how the environment, diet and therapeutics impact this low biomass community of microorganisms. We also focus this review on the pediatric and Black populations as high-risk groups requiring special attention, emphasizing that the whole patient must be considered during treatment. Although new culture-independent techniques have been developed and are more accessible to researchers, the exact contribution the airway microbiome makes in asthma pathogenesis is not well understood. Understanding how the airway microbiome, as a living entity in the respiratory tract, participates in lung immunity during the development and progression of asthma may lead to critical new treatments for asthma, including population-targeted interventions, or even more effective administration of currently available therapeutics.

2.
Front Allergy ; 3: 852067, 2022.
Article in English | MEDLINE | ID: mdl-35386652

ABSTRACT

Asthma is a common chronic respiratory disease that affects millions of people worldwide. Patients with allergic asthma, the most prevalent asthma endotype, are widely considered to possess a defective immune response against some respiratory infectious agents, including viruses, bacteria and fungi. Furthermore, respiratory pathogens are associated with asthma development and exacerbations. However, growing data suggest that the immune milieu in allergic asthma may be beneficial during certain respiratory infections. Immunomodulatory asthma treatments, although beneficial, should then be carefully prescribed to avoid misuse and overuse as they can also alter the host microbiome. In this review, we summarize and discuss recent evidence of the correlations between allergic asthma and the most significant respiratory infectious agents that have a role in asthma pathogenesis. We also discuss the implications of current asthma therapeutics beyond symptom prevention.

3.
Viral Immunol ; 34(8): 573-578, 2021 10.
Article in English | MEDLINE | ID: mdl-34415814

ABSTRACT

Eosinophils participate in the immune response against many pathogens, including viruses. Since mouse eosinophils are susceptible to influenza A virus infection and possess antiviral activity, we evaluated the expression of sialic acid residues in human eosinophils and their response against influenza virus in vitro. We demonstrated that human eosinophils express α2,6- and α2,3-linked sialic acid, and drastically reduced influenza virus titer. After influenza virus exposure, eosinophils upregulated retinoic acid-inducible gene I (RIG-I) mRNA expression, but no other pattern recognition receptors. Finally, high concentrations of interleukin-8 (IL-8) were found in influenza virus-exposed eosinophil cultures. These data suggest that human eosinophils possess antiviral activity and may play a role in the innate immune response to influenza virus.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Eosinophils , Humans , Interleukin-8 , Receptors, Retinoic Acid
4.
Viral Immunol ; 32(5): 198-207, 2019 06.
Article in English | MEDLINE | ID: mdl-31140942

ABSTRACT

Eosinophils have been mainly associated with parasitic infection and pathologies such as asthma. Some patients with asthma present a high number of eosinophils in their airways. Since respiratory viruses are associated with asthma exacerbations, several studies have evaluated the role of eosinophils against respiratory viruses. Eosinophils contain and produce molecules with antiviral activity, including RNases and reactive nitrogen species. They can also participate in adaptive immunity, serving as antigen-presenting cells. Eosinophil antiviral response has been demonstrated against some respiratory viruses in vitro and in vivo, including respiratory syncytial virus and influenza. Given the implication of respiratory viruses in asthma, the eosinophil antiviral role might be an important factor to consider in this pathology.


Subject(s)
Eosinophils/immunology , Respiratory Tract Infections/virology , Virus Diseases/immunology , Adaptive Immunity , Animals , Asthma/immunology , Asthma/virology , Humans , Mice , Orthomyxoviridae/immunology , Respiratory Tract Infections/immunology , Viruses
SELECTION OF CITATIONS
SEARCH DETAIL
...