Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Genome ; 16(4): e20400, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940622

ABSTRACT

Breeding for increased protein without a reduction in oil content in soybeans [Glycine max (L.) Merr.] is a challenge for soybean breeders but an expected goal. Many efforts have been made to develop new soybean varieties with high yield in combination with desirable protein and/or oil traits. An elite line, R05-1415, was reported to be high yielding, high protein, and low oil. Several significant quantitative trait loci (QTL) for protein and oil were reported in this line, but many of them were unstable across environments or genetic backgrounds. Thus, a new study under multiple field environments using the Infinium BARCSoySNP6K BeadChips was conducted to detect and confirm stable genomic loci for these traits. Genetic analyses consistently detected a single major genomic locus conveying these two traits with remarkably high phenotypic variation explained (R2 ), varying between 24.2% and 43.5%. This new genomic locus is located between 25.0 and 26.7 Mb, distant from the previously reported QTL and did not overlap with other commonly reported QTL and the recently cloned gene Glyma.20G085100. Homolog analysis indicated that this QTL did not result from the paracentric chromosome inversion with an adjacent genomic fragment that harbors the reported QTL. The pleiotropic effect of this QTL could be a challenge for improving protein and oil simultaneously; however, a further study of four candidate genes with significant expressions in the seed developmental stages coupled with haplotype analysis may be able to pinpoint causative genes. The functionality and roles of these genes can be determined and characterized, which lay a solid foundation for the improvement of protein and oil content in soybeans.


Subject(s)
Glycine max , Plant Breeding , Chromosome Mapping , Genomics , Glycine max/genetics , Seeds/genetics , Seeds/metabolism , Plant Oils
2.
Int J Mol Sci ; 24(4)2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36834578

ABSTRACT

Seed sugar composition, mainly including fructose, glucose, sucrose, raffinose, and stachyose, is an important indicator of soybean [Glycine max (L.) Merr.] seed quality. However, research on soybean sugar composition is limited. To better understand the genetic architecture underlying the sugar composition in soybean seeds, we conducted a genome-wide association study (GWAS) using a population of 323 soybean germplasm accessions which were grown and evaluated under three different environments. A total of 31,245 single-nucleotide polymorphisms (SNPs) with minor allele frequencies (MAFs) ≥ 5% and missing data ≤ 10% were selected and used in the GWAS. The analysis identified 72 quantitative trait loci (QTLs) associated with individual sugars and 14 with total sugar. Ten candidate genes within the 100 Kb flanking regions of the lead SNPs across six chromosomes were significantly associated with sugar contents. According to GO and KEGG classification, eight genes were involved in the sugar metabolism in soybean and showed similar functions in Arabidopsis. The other two, located in known QTL regions associated with sugar composition, may play a role in sugar metabolism in soybean. This study advances our understanding of the genetic basis of soybean sugar composition and facilitates the identification of genes controlling this trait. The identified candidate genes will help improve seed sugar composition in soybean.


Subject(s)
Glycine max , Quantitative Trait Loci , Glycine max/genetics , Linkage Disequilibrium , Genome-Wide Association Study , Sugars/metabolism , Seeds/metabolism , Polymorphism, Single Nucleotide
3.
Front Plant Sci ; 11: 585856, 2020.
Article in English | MEDLINE | ID: mdl-33537038

ABSTRACT

Edamame is a food-grade soybean [Glycine max (L.) Merr.] that is harvested immature between the R6 and R7 reproductive stages. To be labeled as a premium product, the edamame market demands large pod size and intense green color. A staggered harvest season is critical for the commercial industry to post-harvest process the crop in a timely manner. Currently, there is little information to assist in predicting the optimum time to harvest edamame when the pods are at their collective largest size and greenest color. The objectives of this study were to assess the impact of cultivar, planting date, and harvest date on edamame color, pod weight, and a newly minted Edamame Harvest Quality Index combining both aforementioned factors. And to predict edamame harvest quality based on phenological stages, thermal units, and planting dates. We observed that pod color and weight depended on the cultivar, planting date, and harvest date combination. Our results also indicated that edamame quality is increased with delayed planting dates and that quality was dependent on harvest date with a quadratic negative response to delaying harvest. Maximum quality depended on cultivar and planting and harvest dates, but it remained stable for an interval of 18-27 days around the peak. Finally, we observed that the number of days between R1 and harvest was consistently identified as a key factor driving edamame quality by both stepwise regression and neural network analysis. These research results will help define a planting and harvest strategy for edamame production in Arkansas and the United States Mid-South.

4.
Plant Dis ; 99(8): 1140-1146, 2015 Aug.
Article in English | MEDLINE | ID: mdl-30695935

ABSTRACT

Purple seed stain (PSS), caused by Cercospora kikuchii, is a prevalent soybean disease that causes latent seed infection, seed decay, purple seed discoloration, and overall quality deterioration. The objective of this research was to screen soybean accessions from the United States Department of Agriculture germplasm collection for resistance to PSS. In total, 123 plant introductions (PI) from 28 different countries, representing maturity groups (MG) III, IV, and V, were screened. Incidence of Cercospora leaf blight (% CLB), visual PSS (% PSS), and seed infected by C. kikuchii (% C. kikuchii) in harvested seed were determined. In 2007, % C. kikuchii was 2 to 51% for MG III, 2 to 35% for MG IV, and 0 to 33% for MG V. In 2008, % C. kikuchii was 0 to 45% for MG III, 1 to 71% for MG IV, and 0 to 15% for MG V. In total, four and ten PI from MG III and IV, respectively, were identified as resistant to PSS in both years. Highly positive correlations were found for inoculated versus noninoculated treatments and for % PSS versus % C. kikuchii infection. The PSS-resistant PI identified in this study will be valuable to breeders in developing resistant cultivars.

SELECTION OF CITATIONS
SEARCH DETAIL
...