Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Funct Biomater ; 15(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38921515

ABSTRACT

The recombinant structural protein described in this study was designed based on sequences derived from elastin and silk. Silk-elastin hybrid copolymers are characterized by high solubility while maintaining high product flexibility. The phase transition temperature from aqueous solution to hydrogel, as well as other physicochemical and mechanical properties of such particles, can differ significantly depending on the number of sequence repeats. We present a preliminary characterization of the EJ17zipR protein obtained in high yield in a prokaryotic expression system and efficiently purified via a multistep process. Its addition significantly improves biomaterial's rheological and mechanical properties, especially elasticity. As a result, EJ17zipR appears to be a promising component for bioinks designed to print spatially complex structures that positively influence both shape retention and the internal transport of body fluids. The results of biological studies indicate that the addition of the studied protein creates a favorable microenvironment for cell adhesion, growth, and migration.

2.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727343

ABSTRACT

In this study we propose to use for bioprinting a bioink enriched with a recombinant RE15mR protein with a molecular weight of 26 kDa, containing functional sequences derived from resilin and elastin. The resulting protein also contains RGD sequences in its structure, as well as a metalloproteinase cleavage site, allowing positive interaction with the cells seeded on the construct and remodeling the structure of this protein in situ. The described protein is produced in a prokaryotic expression system using an E. coli bacterial strain and purified by a process using a unique combination of known methods not previously used for recombinant elastin-like proteins. The positive effect of RE15mR on the mechanical, physico-chemical, and biological properties of the print is shown in the attached results. The addition of RE15mR to the bioink resulted in improved mechanical and physicochemical properties and promoted the habitation of the prints by cells of the L-929 line.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38727354

ABSTRACT

Currently, a major challenge in material engineering is to develop a cell-safe biomaterial with significant utility in processing technology such as 3D bioprinting. The main goal of this work was to optimize the composition of a new graphene oxide (GO)-based bioink containing additional extracellular matrix (ECM) with unique properties that may find application in 3D bioprinting of biomimetic scaffolds. The experimental work evaluated functional properties such as viscosity and complex modulus, printability, mechanical strength, elasticity, degradation and absorbability, as well as biological properties such as cytotoxicity and cell response after exposure to a biomaterial. The findings demonstrated that the inclusion of GO had no substantial impact on the rheological properties and printability, but it did enhance the mechanical properties. This enhancement is crucial for the advancement of 3D scaffolds that are resilient to deformation and promote their utilization in tissue engineering investigations. Furthermore, GO-based hydrogels exhibited much greater swelling, absorbability and degradation compared to non-GO-based bioink. Additionally, these biomaterials showed lower cytotoxicity. Due to its properties, it is recommended to use bioink containing GO for bioprinting functional tissue models with the vascular system, e.g., for testing drugs or hard tissue models.

4.
Vet Immunol Immunopathol ; 247: 110406, 2022 May.
Article in English | MEDLINE | ID: mdl-35316702

ABSTRACT

Avian influenza viruses (AIVs) and especially highly pathogenic (HP) AIVs of the H5 and H7 subtypes are of both veterinary and public health concern worldwide. In response to the demand for effective vaccines against H5N1 HPAIVs, we produced recombinant protein based on hemagglutinin (HA), a protective viral antigen. A fragment of the HA ectodomain, with a multibasic cleavage site deletion, was expressed in Escherichia coli, refolded, and chromatographically purified from inclusion bodies. Finally, the protein was formulated in Tris-HCl buffer of pH 8.0 or PBS of pH 7.4 to obtain antigens denoted rH5-1 and rH5-2, respectively. The systemic prime and boost immunizations proved that rH5-1 adsorbed to aluminum hydroxide induces anti-H5 HA neutralizing antibodies and protective immune responses against H5N1 HPAIVs in chickens. The present studies were aimed at stimulating immune responses via the mucosal routes using the systemic prime-mucosal boost strategy. Efficacy trials were performed in commercial layer chickens. For systemic and mucosal immunizations, H5 HA antigens were adjuvanted with aluminum hydroxide and chitosan glutamate, respectively. The first dose of rH5-2 was administered subcutaneously, while its second dose was administered subcutaneously, intraocularly, oculo-nasally, or intranasally. rH5-1 was delivered to the subcutaneously primed chickens by the intranasal route. Post-vaccination sera were analyzed for anti-H5 HA antibodies, using homologous ELISA and heterologous FluAC H5 and hemagglutination inhibition tests. Intraocularly and oculo-nasally delivered rH5-2 mixed with chitosan glutamate was capable of stimulating anti-H5 HA IgY antibody responses in the subcutaneously primed chickens; however, it was ineffective when administered by the intranasal route. Efficient intranasal boosting was achieved using rH5-1. The enhanced production of antigen-specific antibodies was reflected in the development of H5-subtype specific and hemagglutination inhibiting antibodies. Conclusively, the subcutaneous prime and oculo-nasal boost vaccination is proposed as the target strategy for future optimization.


Subject(s)
Chitosan , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza Vaccines , Influenza in Birds , Aluminum Hydroxide , Animals , Antibodies, Viral , Chickens , Glutamic Acid , Hemagglutinins , Immunization, Secondary/veterinary , Influenza in Birds/prevention & control , Vaccination/veterinary
5.
Virol J ; 18(1): 91, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931074

ABSTRACT

BACKGROUND: H5-subtype highly pathogenic (HP) avian influenza viruses (AIVs) cause high mortality in domestic birds and sporadic infections in humans with a frequently fatal outcome, while H5N1 viruses have pandemic potential. Due to veterinary and public health significance, these HPAIVs, as well as low pathogenicity (LP) H5-subtype AIVs having a propensity to mutate into HP viruses, are under epidemiologic surveillance and must be reported to the World Organization for Animal Health (OIE). Our previous work provided a unique panel of 6 different monoclonal antibodies (mAbs) against H5 hemagglutinin (HA), which meets the demand for high-specificity tools for monitoring AIV infection and vaccination in poultry. In this study, we selected one of these mAbs to develop an epitope-blocking (EB) ELISA for detecting H5 subtype-specific antibodies in chicken sera (H5 EB-ELISA). METHODS: In the H5 EB-ELISA, H5 HA protein produced in a baculovirus-expression vector system was employed as a coating antigen, and the G-7-27-18 mAb was employed as a blocking antibody. The performance characteristics of the assay were evaluated by testing 358 sera from nonimmunized chickens and chickens immunized with AIVs of the H1-H16 subtypes or recombinant H5 HA antigen to obtain the reference and experimental antisera, respectively. The samples were classified as anti-H5 HA positive or negative based on the results of the hemagglutination inhibition (HI) assay, the gold standard in subtype-specific serodiagnosis. RESULTS: The H5 EB-ELISA correctly discriminated between the anti-H5 HA negative sera, including those against the non-H5 subtype AIVs, and sera positive for antibodies against the various-origin H5 HAs. Preliminary validation showed 100% analytical and 97.6% diagnostic specificities of the assay and 98.0% and 99.1% diagnostic sensitivities when applied to detect the anti-H5 HA antibodies in the reference and experimental antisera, respectively. CONCLUSIONS: The H5 EB-ELISA performed well in terms of diagnostic estimates. Thus, further optimization and validation work using a larger set of chicken sera and receiver operating characteristic (ROC) analysis are warranted. Moreover, the present assay provides a valuable basis for developing multispecies screening tests for birds or diagnostic tests for humans.


Subject(s)
Antibodies, Viral/immunology , Enzyme-Linked Immunosorbent Assay , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype , Influenza A virus , Influenza in Birds , Animals , Antibodies, Monoclonal/immunology , Chickens/immunology , Epitopes , Immune Sera/immunology , Influenza A Virus, H5N1 Subtype/immunology , Influenza in Birds/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL