Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(9): 107581, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37664589

ABSTRACT

During eukaryotic transcription, RNA polymerase II undergoes dynamic post-translational modifications on the C-terminal domain (CTD) of the largest subunit, generating an information-rich PTM landscape that transcriptional regulators bind. The phosphorylation of Ser5 and Ser2 of CTD heptad occurs spatiotemporally with the transcriptional stages, recruiting different transcriptional regulators to Pol II. To delineate the protein interactomes at different transcriptional stages, we reconstructed phosphorylation patterns of the CTD at Ser5 and Ser2 in vitro. Our results showed that distinct protein interactomes are recruited to RNA polymerase II at different stages of transcription by the phosphorylation of Ser2 and Ser5 of the CTD heptads. In particular, we characterized calcium homeostasis endoplasmic reticulum protein (CHERP) as a regulator bound by phospho-Ser2 heptad. Pol II association with CHERP recruits an accessory splicing complex whose loss results in broad changes in alternative splicing events. Our results shed light on the PTM-coded recruitment process that coordinates transcription.

2.
Nat Commun ; 13(1): 2882, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610225

ABSTRACT

The yeast Saccharomyces cerevisiae is powerful for studying human G protein-coupled receptors as they can be coupled to its mating pathway. However, some receptors, including the mu opioid receptor, are non-functional, which may be due to the presence of the fungal sterol ergosterol instead of cholesterol. Here we engineer yeast to produce cholesterol and introduce diverse mu, delta, and kappa opioid receptors to create sensitive opioid biosensors that recapitulate agonist binding profiles and antagonist inhibition. Additionally, human mu opioid receptor variants, including those with clinical relevance, largely display expected phenotypes. By testing mu opioid receptor-based biosensors with systematically adjusted cholesterol biosynthetic intermediates, we relate sterol profiles to biosensor sensitivity. Finally, we apply sterol-modified backgrounds to other human receptors revealing sterol influence in SSTR5, 5-HTR4, FPR1, and NPY1R signaling. This work provides a platform for generating human G protein-coupled receptor-based biosensors, facilitating receptor deorphanization and high-throughput screening of receptors and effectors.


Subject(s)
Phytosterols , Saccharomyces cerevisiae , Cholesterol/metabolism , Humans , Phytosterols/metabolism , Receptors, Opioid/metabolism , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/genetics , Receptors, Opioid, mu/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sterols/metabolism
3.
Annu Rev Biophys ; 51: 181-200, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34985940

ABSTRACT

Despite tremendous gains over the past decade, methods for characterizing proteins have generally lagged behind those for nucleic acids, which are characterized by extremely high sensitivity, dynamic range, and throughput. However, the ability to directly characterize proteins at nucleic acid levels would address critical biological challenges such as more sensitive medical diagnostics, deeper protein quantification, large-scale measurement, and discovery of alternate protein isoforms and modifications and would open new paths to single-cell proteomics. In response to this need, there has been a push to radically improve protein sequencing technologies by taking inspiration from high-throughput nucleic acid sequencing, with a particular focus on developing practical methods for single-molecule protein sequencing (SMPS). SMPS technologies fall generally into three categories: sequencing by degradation (e.g., mass spectrometry or fluorosequencing), sequencing by transit (e.g., nanopores or quantum tunneling), and sequencing by affinity (as in DNA hybridization-based approaches). We describe these diverse approaches, which range from those that are already experimentally well-supported to the merely speculative, in this nascent field striving to reformulate proteomics.


Subject(s)
Nanopores , Nucleic Acids , High-Throughput Nucleotide Sequencing , Nanotechnology/methods , Proteins , Sequence Analysis, Protein
4.
ACS Chem Biol ; 16(11): 2595-2603, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34734691

ABSTRACT

Methods for the selective labeling of biogenic functional groups on peptides are being developed and used in the workflow of both current and emerging proteomics technologies, such as single-molecule fluorosequencing. To achieve successful labeling with any one method requires that the peptide fragments contain the functional group for which labeling chemistry is designed. In practice, only two functional groups are present in every peptide fragment regardless of the protein cleavage site, namely, an N-terminal amine and a C-terminal carboxylic acid. Developing a global-labeling technology, therefore, requires one to specifically target the N- and/or C-terminus of peptides. In this work, we showcase the first successful application of photocatalyzed C-terminal decarboxylative alkylation for peptide mass spectrometry and single-molecule protein sequencing that can be broadly applied to any proteome. We demonstrate that peptides in complex mixtures generated from enzymatic digests from bovine serum albumin, as well as protein mixtures from yeast and human cell extracts, can be site-specifically labeled at their C-terminal residue with a Michael acceptor. Using two distinct analytical approaches, we characterize C-terminal labeling efficiencies of greater than 50% across complete proteomes and document the proclivity of various C-terminal amino-acid residues for decarboxylative labeling, showing histidine and tryptophan to be the most disfavored. Finally, we combine C-terminal decarboxylative labeling with an orthogonal carboxylic acid-labeling technology in tandem to establish a new platform for fluorosequencing.


Subject(s)
Peptides/chemistry , Proteomics/methods , Single Molecule Imaging/methods , Alkylation , Amino Acids/chemistry , Angiotensins/chemistry , Catalysis , Decarboxylation , Humans , Oxidation-Reduction , Photochemical Processes
5.
J Proteome Res ; 20(2): 1359-1370, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33476154

ABSTRACT

Protein phosphorylation is a key regulatory mechanism involved in nearly every eukaryotic cellular process. Increasingly sensitive mass spectrometry approaches have identified hundreds of thousands of phosphorylation sites, but the functions of a vast majority of these sites remain unknown, with fewer than 5% of sites currently assigned a function. To increase our understanding of functional protein phosphorylation we developed an approach (phospho-DIFFRAC) for identifying the phosphorylation-dependence of protein assemblies in a systematic manner. A combination of nonspecific protein phosphatase treatment, size-exclusion chromatography, and mass spectrometry allowed us to identify changes in protein interactions after the removal of phosphate modifications. With this approach we were able to identify 316 proteins involved in phosphorylation-sensitive interactions. We recovered known phosphorylation-dependent interactors such as the FACT complex and spliceosome, as well as identified novel interactions such as the tripeptidyl peptidase TPP2 and the supraspliceosome component ZRANB2. More generally, we find phosphorylation-dependent interactors to be strongly enriched for RNA-binding proteins, providing new insight into the role of phosphorylation in RNA binding. By searching directly for phosphorylated amino acid residues in mass spectrometry data, we identified the likely regulatory phosphosites on ZRANB2 and FACT complex subunit SSRP1. This study provides both a method and resource for obtaining a better understanding of the role of phosphorylation in native macromolecular assemblies. All mass spectrometry data are available through PRIDE (accession #PXD021422).


Subject(s)
Proteins , Amino Acid Sequence , Chromatography, Gel , Mass Spectrometry , Phosphorylation
6.
ACS Chem Biol ; 15(6): 1401-1407, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32363853

ABSTRACT

The field of proteomics has expanded recently with more sensitive techniques for the bulk measurement of peptides as well as single-molecule techniques. One limiting factor for some of these methods is the need for multiple chemical derivatizations and highly pure proteins free of contaminants. We demonstrate a solid-phase capture-release strategy suitable for the proteolysis, purification, and subsequent chemical modification of peptides. We use this resin on an HEK293T cell lysate and perform one-pot proteolysis, capture, and derivatization to survey peptide capture biases from over 40 000 unique peptides from a cellular proteome. We also show that this capture can be reversed in a traceless manner, such that it is amenable for single-molecule proteomics techniques. With this technique, we perform a fluorescent labeling and C-terminal derivatization on a peptide and subject it to fluorosequencing, demonstrating that washing the resin is sufficient to remove excess dyes and other reagents prior to single-molecule protein sequencing.


Subject(s)
Peptides/isolation & purification , Proteomics/methods , Solid Phase Extraction/methods , Aldehydes/chemistry , Amino Acid Sequence , HEK293 Cells , Humans , Mass Spectrometry/methods , Peptides/analysis , Proteolysis , Proteome/analysis , Proteome/isolation & purification , Sequence Analysis, Protein/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...