Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cardiovasc Diabetol ; 22(1): 141, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37328862

ABSTRACT

BACKGROUND: Metabolic Syndrome (MetS) is characterized by risk factors such as abdominal obesity, hypertriglyceridemia, low high-density lipoprotein cholesterol (HDL-C), hypertension, and hyperglycemia, which contribute to the development of cardiovascular disease and type 2 diabetes. Here, we aim to identify candidate metabolite biomarkers of MetS and its associated risk factors to better understand the complex interplay of underlying signaling pathways. METHODS: We quantified serum samples of the KORA F4 study participants (N = 2815) and analyzed 121 metabolites. Multiple regression models adjusted for clinical and lifestyle covariates were used to identify metabolites that were Bonferroni significantly associated with MetS. These findings were replicated in the SHIP-TREND-0 study (N = 988) and further analyzed for the association of replicated metabolites with the five components of MetS. Database-driven networks of the identified metabolites and their interacting enzymes were also constructed. RESULTS: We identified and replicated 56 MetS-specific metabolites: 13 were positively associated (e.g., Val, Leu/Ile, Phe, and Tyr), and 43 were negatively associated (e.g., Gly, Ser, and 40 lipids). Moreover, the majority (89%) and minority (23%) of MetS-specific metabolites were associated with low HDL-C and hypertension, respectively. One lipid, lysoPC a C18:2, was negatively associated with MetS and all of its five components, indicating that individuals with MetS and each of the risk factors had lower concentrations of lysoPC a C18:2 compared to corresponding controls. Our metabolic networks elucidated these observations by revealing impaired catabolism of branched-chain and aromatic amino acids, as well as accelerated Gly catabolism. CONCLUSION: Our identified candidate metabolite biomarkers are associated with the pathophysiology of MetS and its risk factors. They could facilitate the development of therapeutic strategies to prevent type 2 diabetes and cardiovascular disease. For instance, elevated levels of lysoPC a C18:2 may protect MetS and its five risk components. More in-depth studies are necessary to determine the mechanism of key metabolites in the MetS pathophysiology.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Hypertension , Metabolic Syndrome , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/epidemiology , Metabolomics , Risk Factors , Biomarkers , Hypertension/diagnosis , Hypertension/epidemiology
2.
Nucleic Acids Res ; 51(D1): D539-D545, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36382402

ABSTRACT

The CORUM database has been providing comprehensive reference information about experimentally characterized, mammalian protein complexes and their associated biological and biomedical properties since 2007. Given that most catalytic and regulatory functions of the cell are carried out by protein complexes, their composition and characterization is of greatest importance in basic and disease biology. The new CORUM 4.0 release encompasses 5204 protein complexes offering the largest and most comprehensive publicly available dataset of manually curated mammalian protein complexes. The CORUM dataset is built from 5299 different genes, representing 26% of the protein coding genes in humans. Complex information from 3354 scientific articles is mainly obtained from human (70%), mouse (16%) and rat (9%) cells and tissues. Recent curation work includes sets of protein complexes, Functional Complex Groups, that offer comprehensive collections of published data in specific biological processes and molecular functions. In addition, a new graphical analysis tool was implemented that displays co-expression data from the subunits of protein complexes. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.


Subject(s)
Databases, Protein , Multiprotein Complexes , Animals , Humans , Mice , Rats , Databases, Factual , Mammals , Multiprotein Complexes/chemistry
4.
Mol Syst Biol ; 17(10): e10387, 2021 10.
Article in English | MEDLINE | ID: mdl-34664389

ABSTRACT

We need to effectively combine the knowledge from surging literature with complex datasets to propose mechanistic models of SARS-CoV-2 infection, improving data interpretation and predicting key targets of intervention. Here, we describe a large-scale community effort to build an open access, interoperable and computable repository of COVID-19 molecular mechanisms. The COVID-19 Disease Map (C19DMap) is a graphical, interactive representation of disease-relevant molecular mechanisms linking many knowledge sources. Notably, it is a computational resource for graph-based analyses and disease modelling. To this end, we established a framework of tools, platforms and guidelines necessary for a multifaceted community of biocurators, domain experts, bioinformaticians and computational biologists. The diagrams of the C19DMap, curated from the literature, are integrated with relevant interaction and text mining databases. We demonstrate the application of network analysis and modelling approaches by concrete examples to highlight new testable hypotheses. This framework helps to find signatures of SARS-CoV-2 predisposition, treatment response or prioritisation of drug candidates. Such an approach may help deal with new waves of COVID-19 or similar pandemics in the long-term perspective.


Subject(s)
COVID-19/immunology , Computational Biology/methods , Databases, Factual , SARS-CoV-2/immunology , Software , Antiviral Agents/therapeutic use , COVID-19/genetics , COVID-19/virology , Computer Graphics , Cytokines/genetics , Cytokines/immunology , Data Mining/statistics & numerical data , Gene Expression Regulation , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Immunity, Cellular/drug effects , Immunity, Humoral/drug effects , Immunity, Innate/drug effects , Lymphocytes/drug effects , Lymphocytes/immunology , Lymphocytes/virology , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Myeloid Cells/virology , Protein Interaction Mapping , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Signal Transduction , Transcription Factors/genetics , Transcription Factors/immunology , Viral Proteins/genetics , Viral Proteins/immunology , COVID-19 Drug Treatment
5.
Nucleic Acids Res ; 47(D1): D559-D563, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30357367

ABSTRACT

CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (67%), mouse (15%) and rat (10%). Given the vital functions of these macromolecular machines, their identification and functional characterization is foundational to our understanding of normal and disease biology. The new CORUM 3.0 release encompasses 4274 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 4473 different genes, representing 22% of the protein coding genes in humans. Protein complexes are described by a protein complex name, subunit composition, cellular functions as well as the literature references. Information about stoichiometry of subunits depends on availability of experimental data. Recent developments include a graphical tool displaying known interactions between subunits. This allows the prediction of structural interconnections within protein complexes of unknown structure. In addition, we present a set of 58 protein complexes with alternatively spliced subunits. Those were found to affect cellular functions such as regulation of apoptotic activity, protein complex assembly or define cellular localization. CORUM is freely accessible at http://mips.helmholtz-muenchen.de/corum/.


Subject(s)
Databases, Protein , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Alternative Splicing , Animals , Humans , Mice , Multiprotein Complexes/genetics , Protein Conformation , Protein Interaction Mapping , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Rats
6.
Orphanet J Rare Dis ; 13(1): 22, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29370821

ABSTRACT

BACKGROUND: Thoroughly annotated data resources are a key requirement in phenotype dependent analysis and diagnosis of diseases in the area of precision medicine. Recent work has shown that curation and systematic annotation of human phenome data can significantly improve the quality and selectivity for the interpretation of inherited diseases. We have therefore developed PhenoDis, a comprehensive, manually annotated database providing symptomatic, genetic and imprinting information about rare cardiac diseases. RESULTS: PhenoDis includes 214 rare cardiac diseases from Orphanet and 94 more from OMIM. For phenotypic characterization of the diseases, we performed manual annotation of diseases with articles from the biomedical literature. Detailed description of disease symptoms required the use of 2247 different terms from the Human Phenotype Ontology (HPO). Diseases listed in PhenoDis frequently cover a broad spectrum of symptoms with 28% from the branch of 'cardiovascular abnormality' and others from areas such as neurological (11.5%) and metabolism (6%). We collected extensive information on the frequency of symptoms in respective diseases as well as on disease-associated genes and imprinting data. The analysis of the abundance of symptoms in patient studies revealed that most of the annotated symptoms (71%) are found in less than half of the patients of a particular disease. Comprehensive and systematic characterization of symptoms including their frequency is a pivotal prerequisite for computer based prediction of diseases and disease causing genetic variants. To this end, PhenoDis provides in-depth annotation for a complete group of rare diseases, including information on pathogenic and likely pathogenic genetic variants for 206 diseases as listed in ClinVar. We integrated all results in an online database ( http://mips.helmholtz-muenchen.de/phenodis/ ) with multiple search options and provide the complete dataset for download. CONCLUSION: PhenoDis provides a comprehensive set of manually annotated rare cardiac diseases that enables computational approaches for disease prediction via decision support systems and phenotype-driven strategies for the identification of disease causing genes.


Subject(s)
Heart Diseases/genetics , Heart Diseases/pathology , Rare Diseases/genetics , Rare Diseases/pathology , Computational Biology/methods , Databases, Genetic , Genetic Variation/genetics , Genomics/methods , Heart Diseases/metabolism , Humans , Phenotype , Precision Medicine/methods , Rare Diseases/metabolism
7.
Cell Chem Biol ; 23(10): 1302-1313, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27667560

ABSTRACT

Phenotypic drug discovery offers some advantages over target-based methods, mainly because it allows drug leads to be tested in systems that more closely model distinct disease states. However, a potential disadvantage is the difficulty of linking the observed phenotype to a specific cellular target. To address this problem, we developed DePick, a computational target de-convolution tool to determine targets specifically linked to small-molecule phenotypic screens. We applied DePick to eight publicly available screens and predicted 59 drug target-phenotype associations. In addition to literature-based evidence for our predictions, we provide experimental support for seven predicted associations. Interestingly, our analysis led to the discovery of a previously unrecognized connection between the Wnt signaling pathway and an aromatase, CYP19A1. These results demonstrate that the DePick approach can not only accelerate target de-convolution but also aid in discovery of new functionally relevant biological relationships.


Subject(s)
Drug Discovery/methods , High-Throughput Screening Assays/methods , Small Molecule Libraries/pharmacology , A549 Cells , Animals , Cell Line , Humans , Mice , Molecular Targeted Therapy , Phenotype , Wnt Proteins/antagonists & inhibitors , Wnt Signaling Pathway/drug effects
8.
Diabetes Care ; 38(10): 1858-67, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26251408

ABSTRACT

OBJECTIVE: Metformin is used as a first-line oral treatment for type 2 diabetes (T2D). However, the underlying mechanism is not fully understood. Here, we aimed to comprehensively investigate the pleiotropic effects of metformin. RESEARCH DESIGN AND METHODS: We analyzed both metabolomic and genomic data of the population-based KORA cohort. To evaluate the effect of metformin treatment on metabolite concentrations, we quantified 131 metabolites in fasting serum samples and used multivariable linear regression models in three independent cross-sectional studies (n = 151 patients with T2D treated with metformin [mt-T2D]). Additionally, we used linear mixed-effect models to study the longitudinal KORA samples (n = 912) and performed mediation analyses to investigate the effects of metformin intake on blood lipid profiles. We combined genotyping data with the identified metformin-associated metabolites in KORA individuals (n = 1,809) and explored the underlying pathways. RESULTS: We found significantly lower (P < 5.0E-06) concentrations of three metabolites (acyl-alkyl phosphatidylcholines [PCs]) when comparing mt-T2D with four control groups who were not using glucose-lowering oral medication. These findings were controlled for conventional risk factors of T2D and replicated in two independent studies. Furthermore, we observed that the levels of these metabolites decreased significantly in patients after they started metformin treatment during 7 years' follow-up. The reduction of these metabolites was also associated with a lowered blood level of LDL cholesterol (LDL-C). Variations of these three metabolites were significantly associated with 17 genes (including FADS1 and FADS2) and controlled by AMPK, a metformin target. CONCLUSIONS: Our results indicate that metformin intake activates AMPK and consequently suppresses FADS, which leads to reduced levels of the three acyl-alkyl PCs and LDL-C. Our findings suggest potential beneficial effects of metformin in the prevention of cardiovascular disease.


Subject(s)
Cholesterol, LDL/metabolism , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Aged , Cross-Sectional Studies , Delta-5 Fatty Acid Desaturase , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/prevention & control , Diabetic Angiopathies/prevention & control , Fasting/blood , Fatty Acid Desaturases/metabolism , Female , Genomics , Genotype , Humans , Lipid Metabolism/drug effects , Male , Metabolomics , Middle Aged , Risk Factors
9.
Eur J Epidemiol ; 29(5): 325-36, 2014 May.
Article in English | MEDLINE | ID: mdl-24816436

ABSTRACT

The mechanism of antihypertensive and lipid-lowering drugs on the human organism is still not fully understood. New insights on the drugs' action can be provided by a metabolomics-driven approach, which offers a detailed view of the physiological state of an organism. Here, we report a metabolome-wide association study with 295 metabolites in human serum from 1,762 participants of the KORA F4 (Cooperative Health Research in the Region of Augsburg) study population. Our intent was to find variations of metabolite concentrations related to the intake of various drug classes and--based on the associations found--to generate new hypotheses about on-target as well as off-target effects of these drugs. In total, we found 41 significant associations for the drug classes investigated: For beta-blockers (11 associations), angiotensin-converting enzyme (ACE) inhibitors (four assoc.), diuretics (seven assoc.), statins (ten assoc.), and fibrates (nine assoc.) the top hits were pyroglutamine, phenylalanylphenylalanine, pseudouridine, 1-arachidonoylglycerophosphocholine, and 2-hydroxyisobutyrate, respectively. For beta-blockers we observed significant associations with metabolite concentrations that are indicative of drug side-effects, such as increased serotonin and decreased free fatty acid levels. Intake of ACE inhibitors and statins associated with metabolites that provide insight into the action of the drug itself on its target, such as an association of ACE inhibitors with des-Arg(9)-bradykinin and aspartylphenylalanine, a substrate and a product of the drug-inhibited ACE. The intake of statins which reduce blood cholesterol levels, resulted in changes in the concentration of metabolites of the biosynthesis as well as of the degradation of cholesterol. Fibrates showed the strongest association with 2-hydroxyisobutyrate which might be a breakdown product of fenofibrate and, thus, a possible marker for the degradation of this drug in the human organism. The analysis of diuretics showed a heterogeneous picture that is difficult to interpret. Taken together, our results provide a basis for a deeper functional understanding of the action and side-effects of antihypertensive and lipid-lowering drugs in the general population.


Subject(s)
Antihypertensive Agents/therapeutic use , Hyperlipidemias/drug therapy , Hypertension/drug therapy , Hypolipidemic Agents/therapeutic use , Metabolomics , Adrenergic beta-Antagonists/adverse effects , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme Inhibitors/adverse effects , Carbohydrate Metabolism/drug effects , Diuretics/adverse effects , Female , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyperlipidemias/metabolism , Hypertension/metabolism , Lipid Metabolism/drug effects , Male , Middle Aged
10.
Genome Biol ; 13(7): R62, 2012 Jul 18.
Article in English | MEDLINE | ID: mdl-22809392

ABSTRACT

The pathobiology of common diseases is influenced by heterogeneous factors interacting in complex networks. CIDeR http://mips.helmholtz-muenchen.de/cider/ is a publicly available, manually curated, integrative database of metabolic and neurological disorders. The resource provides structured information on 18,813 experimentally validated interactions between molecules, bioprocesses and environmental factors extracted from the scientific literature. Systematic annotation and interactive graphical representation of disease networks make CIDeR a versatile knowledge base for biologists, analysis of large-scale data and systems biology approaches.


Subject(s)
Databases, Factual , Metabolic Diseases/metabolism , Nervous System Diseases/metabolism , Gene Regulatory Networks , Humans , Metabolic Diseases/genetics , Metabolic Networks and Pathways , Nervous System Diseases/genetics , Software , Systems Biology
11.
Genome Biol ; 11(1): R6, 2010 Jan 20.
Article in English | MEDLINE | ID: mdl-20089154

ABSTRACT

In recent years, microRNAs have been shown to play important roles in physiological as well as malignant processes. The PhenomiR database http://mips.helmholtz-muenchen.de/phenomir provides data from 542 studies that investigate deregulation of microRNA expression in diseases and biological processes as a systematic, manually curated resource. Using the PhenomiR dataset, we could demonstrate that, depending on disease type, independent information from cell culture studies contrasts with conclusions drawn from patient studies.


Subject(s)
Computational Biology/methods , MicroRNAs/genetics , Algorithms , Biochemistry/methods , Cluster Analysis , Disease/genetics , Gene Expression Profiling , Genes , Genome , Humans , Internet , Lod Score , MicroRNAs/metabolism , Models, Biological , Models, Genetic
12.
Nucleic Acids Res ; 38(Database issue): D540-4, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19920129

ABSTRACT

The Negatome is a collection of protein and domain pairs that are unlikely to be engaged in direct physical interactions. The database currently contains experimentally supported non-interacting protein pairs derived from two distinct sources: by manual curation of literature and by analyzing protein complexes with known 3D structure. More stringent lists of non-interacting pairs were derived from these two datasets by excluding interactions detected by high-throughput approaches. Additionally, non-interacting protein domains have been derived from the stringent manual and structural data, respectively. The Negatome is much less biased toward functionally dissimilar proteins than the negative data derived by randomly selecting proteins from different cellular locations. It can be used to evaluate protein and domain interactions from new experiments and improve the training of interaction prediction algorithms. The Negatome database is available at http://mips.helmholtz-muenchen.de/proj/ppi/negatome.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Nucleic Acid , Protein Interaction Mapping , Proteins/chemistry , Algorithms , Animals , Computational Biology/trends , Databases, Protein , Genome, Fungal , Humans , Information Storage and Retrieval/methods , Internet , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Software
13.
Nucleic Acids Res ; 38(Database issue): D497-501, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19884131

ABSTRACT

CORUM is a database that provides a manually curated repository of experimentally characterized protein complexes from mammalian organisms, mainly human (64%), mouse (16%) and rat (12%). Protein complexes are key molecular entities that integrate multiple gene products to perform cellular functions. The new CORUM 2.0 release encompasses 2837 protein complexes offering the largest and most comprehensive publicly available dataset of mammalian protein complexes. The CORUM dataset is built from 3198 different genes, representing approximately 16% of the protein coding genes in humans. Each protein complex is described by a protein complex name, subunit composition, function as well as the literature reference that characterizes the respective protein complex. Recent developments include mapping of functional annotation to Gene Ontology terms as well as cross-references to Entrez Gene identifiers. In addition, a 'Phylogenetic Conservation' analysis tool was implemented that analyses the potential occurrence of orthologous protein complex subunits in mammals and other selected groups of organisms. This allows one to predict the occurrence of protein complexes in different phylogenetic groups. CORUM is freely accessible at (http://mips.helmholtz-muenchen.de/genre/proj/corum/index.html).


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Protein , Multiprotein Complexes , Animals , Computational Biology/trends , Humans , Information Storage and Retrieval/methods , Internet , Mice , Phylogeny , Protein Structure, Tertiary , Rats , Saccharomyces cerevisiae/genetics , Software
14.
Bioinformatics ; 25(1): 141-3, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19010804

ABSTRACT

UNLABELLED: Cross-mapping of gene and protein identifiers between different databases is a tedious and time-consuming task. To overcome this, we developed CRONOS, a cross-reference server that contains entries from five mammalian organisms presented by major gene and protein information resources. Sequence similarity analysis of the mapped entries shows that the cross-references are highly accurate. In total, up to 18 different identifier types can be used for identification of cross-references. The quality of the mapping could be improved substantially by exclusion of ambiguous gene and protein names which were manually validated. Organism-specific lists of ambiguous terms, which are valuable for a variety of bioinformatics applications like text mining are available for download. AVAILABILITY: CRONOS is freely available to non-commercial users at http://mips.gsf.de/genre/proj/cronos/index.html, web services are available at http://mips.gsf.de/CronosWSService/CronosWS?wsdl.


Subject(s)
Computational Biology/instrumentation , Computational Biology/methods , Internet , Software , Animals , Genes , Humans , Proteins
15.
Nucleic Acids Res ; 34(Database issue): D568-71, 2006 Jan 01.
Article in English | MEDLINE | ID: mdl-16381934

ABSTRACT

MfunGD (http://mips.gsf.de/genre/proj/mfungd/) provides a resource for annotated mouse proteins and their occurrence in protein networks. Manual annotation concentrates on proteins which are found to interact physically with other proteins. Accordingly, manually curated information from a protein-protein interaction database (MPPI) and a database of mammalian protein complexes is interconnected with MfunGD. Protein function annotation is performed using the Functional Catalogue (FunCat) annotation scheme which is widely used for the analysis of protein networks. The dataset is also supplemented with information about the literature that was used in the annotation process as well as links to the SIMAP Fasta database, the Pedant protein analysis system and cross-references to external resources. Proteins that so far were not manually inspected are annotated automatically by a graphical probabilistic model and/or superparamagnetic clustering. The database is continuously expanding to include the rapidly growing amount of functional information about gene products from mouse. MfunGD is implemented in GenRE, a J2EE-based component-oriented multi-tier architecture following the separation of concern principle.


Subject(s)
Databases, Genetic , Genomics , Mice/genetics , Multiprotein Complexes/genetics , Multiprotein Complexes/physiology , Animals , Internet , Multiprotein Complexes/chemistry , Proteomics , Software , User-Computer Interface
16.
Bioinformatics ; 21(10): 2520-1, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15769832

ABSTRACT

MOTIVATION: Any development of new methods for automatic functional annotation of proteins according to their sequences requires high-quality data (as benchmark) as well as tedious preparatory work to generate sequence parameters required as input data for the machine learning methods. Different program settings and incompatible protocols make a comparison of the analyzed methods difficult. RESULTS: The MIPS Bacterial Functional Annotation Benchmark dataset (MIPS-BFAB) is a new, high-quality resource comprising four bacterial genomes manually annotated according to the MIPS functional catalogue (FunCat). These resources include precalculated sequence parameters, such as sequence similarity scores, InterPro domain composition and other parameters that could be used to develop and benchmark methods for functional annotation of bacterial protein sequences. These data are provided in XML format and can be used by scientists who are not necessarily experts in genome annotation. AVAILABILITY: BFAB is available at http://mips.gsf.de/proj/bfab


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Benchmarking/methods , Chromosome Mapping/methods , Database Management Systems , Databases, Protein , Documentation/methods , Genome, Bacterial , Bacterial Proteins/classification , Information Storage and Retrieval/methods , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...