Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Foods ; 13(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38611285

ABSTRACT

Polyphenols are ubiquitous by-products in many plant foods. Their intake has been linked to health benefits like the reduced incidence of cardiovascular disease, diabetes, and cancer. These bioactive compounds can be successfully extracted from Boletus edulis mushrooms with acidic water. However, such extract could influence the sensory or textural properties of the product to be enriched; this inconvenience can be avoided by microencapsulating it using spray drying. In this study, the Vienna sausages were reformulated by replacing 2% of the cured meat with microcapsules containing an acidic aqueous extract of Boletus edulis mushrooms and by replacing ice flakes, an ingredient that represents 22.9% of the manufacturing recipe, with ice cubes from the same extract aiming to obtain a polyphenol enriched product. The results showed a higher content of polyphenols in sausages with extract (VSe; 568.92 µg/g) and microcapsules (VSm; 523.03 µg/g) than in the control ones (455.41 µg/g), with significant differences for 2,4-dihydroxybenzoic acid, protocatechuic acid, and 1-O-galloyl-ß-D-glucose. However, because of the oxidative stress caused to the microcapsules by the extract's spray drying, VSm had the highest oxidation state. PV and TBARS levels varied with storage time in all formulations, but given the short period tested, they were well below the allowed/recommended limit. The extract, as such, negatively affected the appearance, odor, and taste of Vienna sausages. The microcapsules, instead, determined an increase in their acceptance rate among consumers; they also prevented moisture loss and color changes during storage. In conclusion, microcapsules are more suitable for use as a polyphenol enrichment ingredient in Vienna sausages than the extract.

2.
Foods ; 12(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37372507

ABSTRACT

Coenzyme Q10 (CoQ10) is a vitamin-like compound found naturally in plant- and animal-derived materials. This study aimed to determine the level of CoQ10 in some food by-products (oil press cakes) and waste (fish meat and chicken hearts) to recover this compound for further use as a dietary supplement. The analytical method involved ultrasonic extraction using 2-propanol, followed by high-performance liquid chromatography with diode array detection (HPLC-DAD). The HPLC-DAD method was validated in terms of linearity and measuring range, limits of detection (LOD) and quantification (LOQ), trueness, and precision. As a result, the calibration curve of CoQ10 was linear over the concentration range of 1-200 µg/mL, with an LOD of 22 µg/mL and an LOQ of 0.65 µg/mL. The CoQ10 content varied from not detected in the hempseed press cake and the fish meat to 84.80 µg/g in the pumpkin press cake and 383.25 µg/g in the lyophilized chicken hearts; very good recovery rates and relative standard deviations (RSDs) were obtained for the pumpkin press cake (100.9-116.0% with RSDs between 0.05-0.2%) and the chicken hearts (99.3-106.9% CH with RSDs between 0.5-0.7%), showing the analytical method's trueness and precision and thus its accuracy. In conclusion, a simple and reliable method for determining CoQ10 levels has been developed here.

3.
Foods ; 12(8)2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37107498

ABSTRACT

This study aimed to formulate a Gouda-type cheese from cow's milk, flavored with lavender flower powder (0.5 g/L matured milk), ripened for 30 days at 14 °C and 85% relative humidity. Physicochemical, microbiological, and textural characteristics, as well as the volatile composition of the control (CC-cheese without lavender) and lavender cheese (LC), were assessed at 10-day intervals of ripening. Consumers' perception, acceptance, and purchase intention were only evaluated for ripened cheeses. Moisture and carbohydrate contents, the pH, cohesiveness, indexes of springiness and chewiness decreased during ripening in both CC and LC; however, protein, ash, and sodium chloride contents, titratable acidity, hardness, lactobacilli, streptococci, and volatiles increased. Fat and fat in dry matter contents, respectively, the energy value did not vary with ripening time in LC and increased in CC; gumminess decreased in CC and did not change in LC. Lavender flower powder significantly affected the cheese's microbiological and sensory characteristics and volatile composition but did not considerably impact physicochemical and textural ones. Populations of lactobacilli and streptococci were substantially higher in LC compared to CC. The volatile profile of LC was dominated by terpene and terpenoids, and that of CC by haloalkanes. Sensory scores were slightly lower for LC than CC, even if it did not considerably affect consumers' acceptance and purchase intention.

4.
Metabolites ; 13(2)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36837891

ABSTRACT

Food analysts have developed three primary techniques for coenzyme Q10 (CoQ10) production: isolation from animal or plant matrices, chemical synthesis, and microbial fermentation; this literature review is focused on the first method. Choosing the appropriate analytical method for determining CoQ10 in a particular food product is essential, as this analyte is a quality index for healthy foods; various associations of extraction and quantification techniques are available in the literature, each having advantages and disadvantages. Several factors must be considered when selecting an analytical method, such as specificity, linear range, detection limit, quantification limit, recovery rate, operation size, analysis time, equipment availability, and costs. In another train of thought, the food sector produces a significant amount of solid and liquid waste; therefore, waste-considered materials can be a valuable source of CoQ10 that can be recovered and used as a fortifying ingredient or dietary supplement. This review also pursues identifying the richest food sources of CoQ10, and has revealed them to be vegetable oils, fish oil, organs, and meat.

5.
Int J Mol Sci ; 23(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36430568

ABSTRACT

Yersiniosis, caused by Yersinia enterocolitica, is the third most rampant zoonotic disease in Europe; the pathogen shows high antibiotic resistance. Herbs have multiple anti-microbial components that reduce microorganism resistance. Therefore, an extract of Picrorhiza kurroa (P. kurroa) was evaluated for potential antimicrobial activity. We report that the ethanolic extract of P. kurroa showed effective antimicrobial activity (zone of inhibition: 29.8 mm, Minimum inhibitory concentration (MIC): 2.45 mg/mL, minimum bactericidal concentration (MBC): 2.4 mg/mL) against Yersinia enterocolitica. Potential bioactive compounds from P. kurroa were identified using LC-MS, namely, cerberidol, annonidine A, benzyl formate, picroside-1, and furcatoside A. P. kurroa showed effective antimicrobial potential in skim milk at different pH, acidity, and water activity levels. P. kurroa affected the physiology of Yersinia enterocolitica and reduced the number of live cells. Yersinia enterocolitica, when incubated with P. kurroa extract, showed lower toxin production. Picroside-1 was isolated and showed higher antimicrobial potential in comparison to the standard antibiotic. Picroside-1 lysed the Yersinia enterocolitica cells, as observed under scanning electron microscopy. Docking revealed that picroside-1 (ligand) showed both hydrophilic and hydrophobic interactions with the dihydrofolate reductase (DHFR) protein of Yersinia enterocolitica and that DHFR is a possible drug target. The high activity and natural origin of Picroside-1 justify its potential as a possible drug candidate for Yersinia enterocolitica.


Subject(s)
Anti-Infective Agents , Picrorhiza , Yersinia enterocolitica , Picrorhiza/chemistry , Picrorhiza/metabolism , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism
6.
Foods ; 11(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36230043

ABSTRACT

A comparative study between two novel starch modification technologies, i.e., microwave (MI) and γ-irradiation (IR), is of important significance for their applications. The objective of this work is to compare the changes in lotus rhizome starch (LRS) subjected to single modifications by MI (thermal treatment) and IR (non-thermal treatment), and dual modification by changing the treatment sequence, i.e., microwave followed by irradiation (MI-IR) and irradiation followed by microwave (IR-MI). The amylose content of native and modified LRS varied from 14.68 to 18.94%, the highest and lowest values found for native and MI-LRS, respectively. IR-treated LRS showed the lowest swelling power (4.13 g/g) but highest solubility (86.9%) among native and modified LRS. An increase in light transmittance value suggested a lower retrogradation rate for dual-modified starches, making them more suitable for food application at refrigeration and frozen temperatures. Dual-modified LRS showed the development of fissures and dents on the surface of granules as well as the reduction in peak intensities of OH and CH2 groups in FTIR spectra. Combined modifications (MI and IR) reduced values of pasting parameters and gelatinization properties compared to native and microwaved LRS and showed improved stability to shear thinning during cooking and thermal processing. The sequence of modification also affected the rheological properties; the G' and G″ of MI-IR LRS were lower (357.41 Pa and 50.16 Pa, respectively) than the IR-MI sample (511.96 Pa and 70.09 Pa, respectively), giving it a soft gel texture. Nevertheless, dual modification of LRS by combining MI and IR made more significant changes in starch characteristics than single modifications.

7.
Antioxidants (Basel) ; 11(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36290755

ABSTRACT

The present study was designed to explore the anthocyanin profile and antioxidant activities in Indian rose varieties (Rosa × hybrida). Among fifty varieties, Ashwini recorded the highest total phenolic content (427.59 ± 3.47 mg GAE/100 g) along with the highest FRAP (397.15 ± 0.82 µmol trolox/g) and DPPH free radical scavenging activity (93.47 ± 0.19%) on a fresh weight basis. A significant positive correlation was observed between total anthocyanin content, total phenolic content, and antioxidant activities. Four distinct clusters were formed according to total anthocyanins, total phenols, and antioxidant activities; white- and yellow-colored varieties were most distant from red ones. Principal component analysis revealed that variable total anthocyanin content contributed to the maximum variation among the fifty rose varieties studied. Highly anthocyanin-rich rose varieties were characterized by high-performance liquid chromatography coupled with a photodiode array detector (HPLC-PAD), which identified two major components of anthocyanins, i.e., cyanidin 3,5-di-O-glucoside and pelargonidin 3,5-di-O-glucoside. Cyanidin 3,5-di-O-glucoside was the predominant anthocyanin in red- and pink-colored varieties, whereas pelargonidin 3,5-di-O-glucoside was the major one in the orange variety. The maximum cyanidin 3,5-di-O-glucoside content was recorded in variety Ashwini (497.79 mg/100 g), whereas the maximum pelargonidin 3,5-di-O-glucoside content was recorded in Suryakiran (185.43 mg/100 g). It is suggested that the rose varieties with high anthocyanin content and antioxidant activity can be exploited as a potential source of nutraceuticals in the food industry.

8.
Nutrients ; 14(17)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-36079730

ABSTRACT

Cereal processing generates around 12.9% of all food waste globally. Wheat bran, wheat germ, rice bran, rice germ, corn germ, corn bran, barley bran, and brewery spent grain are just a few examples of wastes that may be exploited to recover bioactive compounds. As a result, a long-term strategy for developing novel food products and ingredients is encouraged. High-value compounds like proteins, essential amino acids, essential fatty acids, ferulic acid, and other phenols, tocopherols, or ß-glucans are found in cereal by-products. This review aims to provide a critical and comprehensive overview of current knowledge regarding the bioactive compounds recovered from cereal by-products, emphasizing their functional values and potential human health benefits.


Subject(s)
Edible Grain , Refuse Disposal , Dietary Fiber/analysis , Edible Grain/chemistry , Humans , Plant Oils/analysis , Seeds/chemistry
9.
Foods ; 11(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35892769

ABSTRACT

Apricot kernel, a by-product of apricot fruit, is a rich source of proteins, vitamins, and carbohydrates. Moreover, it can be used for medicinal purposes and the formation of food ingredients. Several techniques have been adopted for the extraction of bioactive compounds from the apricot kernel such as solvent extraction, ultra-sonication, enzyme-assisted, microwave-assisted, and aqueous extraction. Apricot kernels may help to fight against various diseases such as cancer and cancer immunotherapy, as well as reduce blood pressure. Additionally, the kernel is famous due to its diverse industrial applications in various industries and fields of research such as thermal energy storage, the cosmetic industry, the pharmaceutical industry, and the food industry. Especially in the food industry, the apricot kernel can be used in the preparation of low-fat biscuits, cookies, cakes, and the fabrication of antimicrobial films. Therefore, in this review article, the bioactivity of the apricot kernel is discussed along with its chemical or nutritional composition, characterizations, and applications.

10.
Polymers (Basel) ; 14(15)2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35893967

ABSTRACT

Rice, Oryza sativa, is the major staple food that provides a larger share of dietary energy for more of the population than other cereal crops. Moreover, rice has a significant amount of protein including four different fractions such as prolamin, glutelin, globulin, and albumin with different solubility characteristics. However, these proteins exhibit a higher amino acid profile, so they are nutritionally important and possess several functional properties. Compared with many other cereal grains, rice protein is hypoallergic due to the absence of gluten, and therefore it is used to formulate food for infants and gluten-allergic people. Furthermore, the availability makes rice an easily accessible protein source and it exhibits several activities in the human body which discernibly affect total health. Because of these advantages, food industries are currently focusing on the effective application of rice protein as an alternative to animal-based and gluten-containing protein by overcoming limiting factors, such as poor solubility. Hence, it is important to gain an in-depth understanding of the rice protein to expand its application so, the underlined concept of this review is to give a current summary of rice protein, a detailed discussion of the chemistry of rice protein, and extraction techniques, and its functional properties. Furthermore, the impact of rice protein on human health and the current application of rice protein is also mentioned.

11.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35740041

ABSTRACT

Over the past few years, mushrooms have been extensively explored in the field of pharmaceutical and food science, and researchers are heading toward the search for vital components with a higher safety margin and multitarget applications. Moreover, among all age group populations, mushroom consumption has increased immensely owing to their great nutritional aspects, desirable organoleptic properties, and aroma. In addition, mushrooms continue to generate much attention chiefly in their consumption as food, as a cure for different ailments, as well as a vital commodity globally, owing to their dietary, antioxidant, and therapeutic values. Mushrooms are considered one of the important and suitable diets for patients having multiple types of diseases. Additionally, due to potential immunomodulatory effects, quality protein, and low fat, and cholesterol content, mushrooms are used as an important ingredient for food formulation. Therefore, this review article provides detailed information on Calocybe indica as they are the third most important commercially grown mushroom following button and oyster mushrooms. This review brings tangible evidence that milky white mushrooms are a great source of natural components and antioxidants with potential application in pharmaceuticals and in treating and managing different diseases. Several food applications of milky white mushrooms have also been discussed and reviewed.

12.
Molecules ; 27(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35209133

ABSTRACT

Over the past decade, there has been growing interest in polyphenols' research since these compounds, as antioxidants, have several health benefits, such as preventing neurodegenerative diseases, inflammation, cancer, cardiovascular diseases, and type 2 diabetes. This study implements an analytical method to assess the total phenolic content (TPC) in essential oils using Folin-Ciocalteu's phenol reagent and quantifies the individual phenolic compounds by liquid chromatography. Thus, the research design and methodology included: (1) extraction of essential oil from dried thyme leaves by hydrodistillation; (2) spectrophotometric measurement of TPC by Folin-Ciocalteu method; and (3) identification and quantification of individual phenolic compounds by high-performance liquid chromatography-diode array detection/electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS). Results revealed a TPC of 22.62 ± 0.482 mg GAE/100 µL and a polyphenolic profile characterized by phenolic acids (52.1%), flavonoids (16.1%), and other polyphenols (31.8%). Thymol, salvianolic acid A, and rosmarinic acid were the major compounds of thyme essential oil. The proposed analytical procedure has an acceptable level of repeatability, reproducibility, linearity, LOD (limit of detection), and LOQ (limit of quantification).


Subject(s)
Oils, Volatile/analysis , Oils, Volatile/chemistry , Phenols/analysis , Spectrophotometry , Chromatography, High Pressure Liquid , Methanol , Plant Extracts/chemistry , Polyphenols/analysis , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry/methods
13.
Molecules ; 26(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34946590

ABSTRACT

Edible mushrooms are well-known for their nutritional benefits and low energy density. In addition, mushroom extracts contain various bioactive compounds that account for their antioxidant activity; the applied extraction conditions influence the extraction efficiency of such compounds. Therefore, this study investigates the effects of four extractants on the content of polyphenols and antioxidant properties of Boletus edulis and Cantharellus cibarius mushrooms, aiming to optimize the extraction process. Powders of B. edulis and C. cibarius mushrooms were subjected to extraction with acidic water (10% CH3COOH), ethanol/water/acetic acid (15:76.5:8.5, v/v/v), hexane, and diethyl ether to measure their total phenolic content (TPC), total flavonoid content (TFC), and Trolox equivalent antioxidant capacity (TEAC). Furthermore, the level of individual polyphenolic compounds in these extracts was quantified using an HPLC-DAD-ESI-MS method. Results showed that the type of solvent significantly influenced the TPC and TEAC of mushroom powder but insignificantly influenced the TFC. A very strong positive correlation was found between TPC and TEAC, but no correlation was found between TFC and TEAC or TPC and TFC. Acidic water extracted the highest amount of polyphenolic compounds from these mushroom powders. Therefore, the aqueous extract showed the highest TPC and strongest antioxidant activity. Thus, acidic water is recommended for polyphenol analysis in B. edulis and C. cibarius mushrooms.


Subject(s)
Antioxidants/pharmacology , Basidiomycota/chemistry , Plant Extracts/pharmacology , Polyphenols/pharmacology , Acetic Acid/chemistry , Antioxidants/chemistry , Antioxidants/isolation & purification , Biphenyl Compounds/antagonists & inhibitors , Ethanol/chemistry , Picrates/antagonists & inhibitors , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Polyphenols/chemistry , Polyphenols/isolation & purification , Principal Component Analysis , Romania , Solvents/chemistry , Water/chemistry
14.
Materials (Basel) ; 14(24)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947237

ABSTRACT

It is well-known that the utilization of mushrooms as therapeutic agents is not new. Over the past years, they have been used by local individuals as food, as well as medicines, throughout the world. Nowadays, mushrooms are excessively used in the medicine, pharmacy, food, and fermentation fields as well. Wild mushrooms are of particular interest, especially Trametes versicolor (commonly known as turkey mushrooms) due to their various uses in the food and pharmaceutical industries. They represent not only a huge storehouse of vitamins, minerals, and dietary fiber, but they are also an important source of bioactive polysaccharides. They are widely used in traditional oriental therapies. The fruiting bodies are used in the preparation of health tonics and tea. The present review is necessary to explore more about this mushroom-like classical taxonomy, morphology, nutritional value, bioactivity, various health attributes, mechanism of bioactive components against various diseases, and food applications. The influence of processing processes on the nutritional properties and bioactivity of the fungus is discussed. Potential bioactive components promising health attributes of Trametes versicolor are extensively described. Additionally, several in vivo and in vitro studies have demonstrated the beneficial effects of polysaccharopeptides (PSP) and Polysaccharide-K (PSK) on the aspects related to immune function and inflammation, also presenting an anticancerous effect. Moreover, PSP and PSK were successfully described to decrease several life-threatening diseases. The potential food applications of Trametes versicolor were detailed to signify the effective utilization of the mushroom in functional food formulation.

15.
Plants (Basel) ; 10(11)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834863

ABSTRACT

Nowadays, the pandemic situation has encouraged the idea of sustainable healthy foods leading to new trends in food consumption. Brewers spent grain (BSG) represents a potential functional food rich in fiber, protein, lipids, mineral and phenols that needs to be further exploited. In this vein, five different BSG types were collected from local breweries and valorized in cookies manufacturing. Thus, proximate composition (protein, minerals, lipids, ash, crude fiber and carbohydrates) was analyzed using AACC (American Association of Cereal Chemists) methods, DPPH (2,2-Diphenyl-1-picrylhydrazyl), and Folin Ciocalteu methods were used to determined antioxidant activity and total phenols, while minerals and aroma volatile compounds were performed using inductively coupled plasma optical emission spectrometry (ICP-OES) and ITEX/GC-MS (in tube extraction gas chromatography-mass spectrometry) respectively. Color and physical characteristics, together with sensorial analysis, were also evaluated. The results highlighted a significant difference between BSG samples, mainly from the total phenols, antioxidant activity and aroma volatile compounds point of view. BSG volatiles compounds from the aldehydes group such as 2-methyl-propanal, 3-methyl-butanal and 2-methyl-butanal were identified also in the final baked goods, leading to a pleasant and appreciated consumers' taste and aroma. Furthermore, cookies sensorial analysis emphasized that the sample manufactured with BSG from light and dark malt mixture was more appreciated by consumers, attaining the highest hedonic scores.

16.
Materials (Basel) ; 14(6)2021 Mar 22.
Article in English | MEDLINE | ID: mdl-33809892

ABSTRACT

This paper presents a novel approach for the recovery of lead from waste cathode-ray tube (CRT) glass by applying a combined chemical-electrochemical process which allows the simultaneous recovery of Pb from waste CRT glass and electrochemical regeneration of the leaching agent. The optimal operating conditions were identified based on the influence of leaching agent concentration, recirculation flow rate and current density on the main technical performance indicators. The experimental results demonstrate that the process is the most efficient at 0.6 M acetic acid concentration, flow rate of 45 mL/min and current density of 4 mA/cm2. The mass balance data corresponding to the recycling of 10 kg/h waste CRT glass in the identified optimal operating conditions was used for the environmental assessment of the process. The General Effect Indices (GEIs), obtained through the Biwer Heinzle method for the input and output streams of the process, indicate that the developed recovery process not only achieve a complete recovery of lead but it is eco-friendly as well.

17.
Foods ; 10(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670385

ABSTRACT

The efficiency of some films prepared from heat-denatured whey protein isolate solutions on the quality and shelf-life of brook trout samples during storage at 4 °C was studied in this research (WPIf-a film based on whey protein isolate and WPIf+2.5%TEO-a film based on whey protein isolate incorporated with 2.5% tarragon essential oil). The control and covered fish samples were periodically assessed (at 3 days) over 15 days of storage for the physicochemical (pH; EC, electrical conductivity; TVB-N, total volatile basic nitrogen; TBARS, thiobarbituric acid reactive substances; color), microbiological (TVC, total viable count; PTC, psychrotrophic count; LAB, lactic acid bacteria; H2S-producing bacteria), and sensory properties (color discoloration; odor; overall acceptability). The WPIf+2.5%TEO has proven enhanced quality preservation effects compared to WPIf by showing lower values for physicochemical parameters, lower microbial loads, and higher sensory scores in the fish sample. All these effects have led to an extension of the sample's shelf-life. In conclusion, the tarragon essential oil has conferred antioxidant and antimicrobial properties to the film. Thus, the WPIf+2.5%TEO could be a promising material for the packaging of fresh brook trout during refrigerated storage.

18.
Polymers (Basel) ; 12(8)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764387

ABSTRACT

The effects of heat treatment and the addition of tarragon essential oil on physical and mechanical properties of films prepared with 5% whey protein isolate (WPI) and 5% glycerol were investigated in this study. Heat treatment of the film-forming solution caused increases in thickness, moisture content, swelling degree, water vapor permeability (WVP), b*-value, ΔE*-value, transmittance values in the 200-300-nm region, transparency, and puncture resistance of the film, but decreases in water solubility, L*-value, a*-value, transmittance values in the 350-800-nm region, and puncture deformation. When incorporated with tarragon essential oil, heat-treated films have the potential to be used as antimicrobial food packaging. The addition of tarragon essential oil in film-forming solution caused increases in moisture content, solubility in water, WVP, a*-value, b*-value, ΔE*-value, and transparency of the film; decreases in transmittance values in the range of 600-800 nm; and variations in swelling degree, L*-value, transmittance values in the range of 300-550 nm, puncture resistance, and puncture deformation. Nevertheless, different tendencies were noticed in UNT (untreated) and HT (heat-treated) films with regards to transparency, light transmittance, puncture resistance, and puncture deformation. Based on these findings, HT films show improved physical and mechanical properties and, therefore, are more suitable for food-packaging applications.

19.
Molecules ; 23(12)2018 Dec 11.
Article in English | MEDLINE | ID: mdl-30544917

ABSTRACT

This study aimed to determine the chemical composition, fatty acids, volatile profile and phenolic compounds profiles from five wild edible mushrooms (Agaricus bisporus, Pleurotus ostreatus, Cantharellus cibarius, Boletus edulis, Lactarius piperatus) from Romania. The results indicated that the dried fruiting bodies of selected mushrooms were rich in proteins (36.24 g/100 g dw-Boletus edulis) and carbohydrates (62.45 g/100 g dw-Lactarius piperatus). 4-Hydroxybenzoic acid and cinnamic acid, were the main phenolic compound present in all selected species. Additionally, the fatty acid pattern included polyunsaturated acids in more than 60% of all fatty acids followed by monounsaturated fatty acids (30%). For the studied mushroom samples, the main volatile compounds identified by the gas chromatography-mass spectrometry were hexanal, benzaldehyde and dodecanoic acid. According to the obtained results, the fruiting bodies of selected Romanian mushrooms are a rich source of bioactive molecules indicating that they may be further exploited as functional ingredients in the composition of innovative food products.


Subject(s)
Agaricales/chemistry , Fatty Acids/analysis , Phenols/analysis , Volatile Organic Compounds/analysis , Food Analysis , Fungal Proteins/analysis , Gas Chromatography-Mass Spectrometry , Nutritive Value , Pleurotus/chemistry , Romania
20.
Molecules ; 23(9)2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30189606

ABSTRACT

This study is focused on the comparison and classification of parsley, lovage, basil, and thyme essential oils (EOs) based on their chemical composition, total phenolic content, antioxidant and antibacterial activities by using appropriate chemometric methods: Principal component analysis (PCA) and hierarchical cluster analysis (HCA). The results showed that parsley, lovage, and thyme EOs are rich in monoterpene hydrocarbons, but basil EO is rich in oxygenated monoterpenes and phenylpropanoids, and that both PCA and HCA separated essential oils into two main groups of which one contains two sub-groups. ß-Phellandrene was the major component identified in parsley and lovage EOs, estragole was the major component in basil EO, and p-cymene was the major component in thyme EO. Thyme EO showed the highest level of total phenolics, the highest antioxidant capacity, and exhibited the stronger antibacterial activity, results that were emphasized by both chemometric methods used. Among tested essential oils, the one of parsley was distinguished by a low total TPC, weak antioxidant activity, and weak antibacterial activity against S. enteritidis (ATCC 13076); lovage EO by low TPC, weak antioxidant activity, but moderate antibacterial activity; and basil EO by low TPC, moderate antioxidant activity, and weak antibacterial activity against L. monocytogenes (ATCC 19114).


Subject(s)
Apiaceae/chemistry , Lamiaceae/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemistry , Antioxidants/pharmacology , Microbial Sensitivity Tests , Phenol/chemistry , Phenol/pharmacology , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...