Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 204: 106661, 2023 01.
Article in English | MEDLINE | ID: mdl-36565938

ABSTRACT

Although several protocols were developed to extract DNA for soil-transmitted helminthiasis diagnostic, amplifying these extracts remains challenging due to DNA polymerase inhibitors. This study aimed to assess a DNA extraction method for efficient detection of soil-transmitted helminth species by determining stool mass and the type of DNA polymerase that can be used for this extraction method. For this study, 141 stool samples harbouring soil-transmitted eggs and 50 samples without egg were obtained from school-aged children of Makenene in the Centre region of Cameroon. DNA was extracted from 10, 20, 40 and 80 mg of stool using commercial kit and/or cetyltrimethylammonium bromide (CTAB)-based method. The amount of stool for molecular diagnostic of soil-transmitted helminthiasis was determined by amplifying Ascaris lumbricoides DNA. The performances of three DNA polymerases and CTAB-based method were assessed by amplifying DNA of different soil-transmitted helminth species. For this study, 94 stools with A. lumbricoides eggs, 39 with Trichuris trichuria and 15 with hookworm were analyzed. DNA of A. lumbricoides, T. trichuria, Necator americanus and Ancylostoma duodenale were detected in 97.9% of extracts from stools harbouring soil-transmitted helminth eggs. Soil-transmitted helminth DNAs were significantly (X2 = 17.66; df = 3; p ã€ˆ00001) more amplified in extracts from 10 and 20 mg than those from 40 and 80 mg. The amplification rate with "Q5 high fidelity DNA polymerase" was significantly (X2 = 30.54; df = 2; p < 0.00001) higher than that of other DNA polymerases. Multiplex-PCR confirmed co-infections of A. lumbricoides with either T. trichuria or N. americanus. The extraction cost for the CTAB-based method was $1.45. This method appearedis reliable and 3 times cost effective than commercial kit. Its combination with the "Q5 high fidelity DNA polymerase" may improve soil-transmitted helminthiasis diagnostic.


Subject(s)
Helminthiasis , Helminths , Child , Animals , Humans , Cetrimonium , DNA, Helminth , Soil , Helminthiasis/diagnosis , Feces , Prevalence
2.
Sci Rep ; 12(1): 13935, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35978014

ABSTRACT

Preventive chemotherapy (PC) that remains the main control strategy recommended by the World Health Organization to achieve the elimination of soil-transmitted helminth (STH) infections as a public health problem must be strengthened by identifying the remaining transmission hot-spots for the deployment of appropriate control measures. This study was designed to assess the prevalence and infections intensities of soil-transmitted helminths and perform micro scale mapping in order to identify transmission hot-spots for targeted control operations. Stool samples were collected from 1775 children in ten primary schools of eight sub-districts of Makenene in Cameroon. Kato Katz technique was used to process and examine stool samples to detect the eggs of soil-transmitted nematodes. The prevalence of soil-transmitted helminth species as well as the infection intensities was compared. Data visualizations in forms of maps were made using Quantum geographic information system (QGIS) software. The overall prevalence of soil-transmitted helminth infections was 4.8% with a 95% confidence interval (CI) of 3.8-5.9%: 3.0% (95% CI 2.2-3.9) for Ascaris lumbricoides, 1.4% (95% CI 0.9-2.0) for Trichuris trichiura and 0.8% (95% CI 0.5-1.4) for hookworms. The prevalence of soil-transmitted helminth species differ significantly between schools and sub-districts. The intensity of infections was light (2.4%, 1.1% and 0.8%), moderate (0.4%, 0.1% and 0.1%) and heavy (0.2%, 0.2% and 0%) for A. lumbricoides, T. trichiura and hookworm respectively. The mean intensity of infections was 7255 EPG for A. lumbricoides, 2900 EPG for T. trichiura and 298 EPG for hookworm. Between schools, significant difference was recorded in the means of infection intensities of T. Trichiura and hookworms but not for A. lumbricoides. This difference was also significant for T. Trichiura when comparison were between sex. No significant difference were recorded when the comparison were between age. Fine mapping revealed that children harbouring heavy infections were clustered in the same sub-districts; highlighting the presence of high endemicity sub-districts and hot-spots for the transmission of different soil-transmitted helminth species. This study showed a diversity in the prevalence and transmission of different soil-transmitted helminth species. It also hightlighted the need for micro scale mapping to enable the localisation of high endemicity sub-districts and transmission hot-spot sites where targeted control operations must be deployed to achieve STH elimination.


Subject(s)
Helminthiasis , Helminths , Hookworm Infections , Ancylostomatoidea , Animals , Ascaris lumbricoides , Child , Feces/parasitology , Helminthiasis/drug therapy , Hookworm Infections/epidemiology , Humans , Prevalence , Soil/parasitology , Trichuris
3.
Parasite ; 24: 51, 2017.
Article in English | MEDLINE | ID: mdl-29261481

ABSTRACT

Despite the economic impact of trypanosome infections, few investigations have been undertaken on the population genetics and transmission dynamics of animal trypanosomes. In this study, microsatellite markers were used to investigate the population genetics of Trypanosoma congolense "forest type", with the ultimate goal of understanding its transmission dynamics between tsetse flies and domestic animals. Blood samples were collected from pigs, sheep, goats and dogs in five villages in Fontem, South-West region of Cameroon. In these villages, tsetse were captured, dissected and their mid-guts collected. DNA was extracted from blood and tsetse mid-guts and specific primers were used to identify T. congolense "forest type". All positive samples were genetically characterized with seven microsatellite markers. Genetic analyses were performed on samples showing single infections of T. congolense "forest type". Of the 299 blood samples, 137 (46%) were infected by T. congolense "forest type". About 3% (54/1596) of tsetse fly mid-guts were infected by T. congolense "forest type". Of 182 samples with T. congolense "forest type", 52 were excluded from the genetic analysis. The genetic analysis on the 130 remaining samples revealed polymorphism within and between subpopulations of the target trypanosome. The dendrogram of genetic similarities was subdivided into two clusters and three sub-clusters, indicating one major and several minor genotypes of T. congolense "forest type" in tsetse and domestic animals. The low FSTvalues suggest low genetic differentiation and no sub-structuration within subpopulations. The same T. congolense genotypes appear to circulate in tsetse and domestic animals.


Subject(s)
Animals, Domestic/parasitology , Insect Vectors/parasitology , Trypanosoma congolense/genetics , Trypanosomiasis, African/veterinary , Tsetse Flies/parasitology , Alleles , Animals , Cameroon , Cluster Analysis , DNA, Protozoan/isolation & purification , Dog Diseases/parasitology , Dogs , Gene Frequency , Genetic Variation , Genotype , Goat Diseases/parasitology , Goats , Polymorphism, Genetic , Sheep , Sheep Diseases/parasitology , Swine , Swine Diseases/parasitology , Trypanosoma congolense/classification , Trypanosomiasis, African/parasitology
4.
Parasit Vectors ; 7: 385, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25142136

ABSTRACT

BACKGROUND: Genetic variation of microsatellite loci is a widely used method for the analysis of population genetic structure of several organisms. To improve our knowledge on the population genetics of trypanosomes, Trypanosoma congolense forest and savannah types were identified in the mid-guts of Glossina palpalis palpalis caught in five villages of Fontem in the South-West region of Cameroon. From the positive samples of Trypanosoma congolense forest, the genetic diversity and the population genetic structure of these parasites were evaluated. METHOD: For this study, pyramidal traps were set up during three entomological surveys and 3347 tsetse flies were collected, dissected and 1903 midguts collected. DNA was extracted from midguts and specific primers were used to identify Trypanosoma congolense forest and savannah. All Trypanosoma congolense forest positive samples were characterized with seven microsatellite markers. RESULTS: Microscopic examination revealed 25 (1.31%) mid-gut infections with trypanosomes while the PCR method identified 120 (6.3%) infections due to Trypanosoma congolense: 94 (78.33%) Trypanosoma congolense forest and 28 (21.77%) Trypanosoma congolense savannah. The trypanosome infection rates varied significantly between villages and years of capture. Menji recorded the highest infection rate (15.11%); and samples captured in 2009 were more infected (14.33%). The microsatellite markers revealed a genetic variability between Trypanosoma congolense forest populations of Fontem villages and 6.38% of mixed infections due to different genotypes of T. congolense "forest type". CONCLUSION: Our data on the population genetics play in favor of a clonal reproduction of this parasite. The microsatellite markers used here showed a low genetic differentiation and an absence of sub-structuration (FST ≤ 0.0003) between Trypanosoma congolense forest populations of Fontem villages. However, the high FST value (FST ≥ 0.3911) between samples of the Democratic Republic of Congo and those of Fontem villages indicates low migration rates between trypanosomes of these subpopulations.


Subject(s)
Trypanosoma congolense/genetics , Tsetse Flies/parasitology , Animals , Cameroon/epidemiology , Forests , Genetic Variation
5.
Mycoses ; 55(4): 310-7, 2012 Jul.
Article in English | MEDLINE | ID: mdl-21831103

ABSTRACT

The increasing recognition and importance of fungal infections, the difficulties encountered in their treatment and the increase in resistance to antifungal agents have stimulated the search for therapeutic alternatives. The objective of this study was to evaluate the antifungal activities of three substituted 2-aminothiophenes (1, 2 and 3) against some fungal species. The synthesis of substituted 2-aminothiophenes was carried out through the most versatile synthetic method developed by Gewald et al. The antifungal activity was performed against yeast, dermatophytes and Aspergillus species using the broth microdilution method. The effect of these aminothiophenes was examined on the protein content and profile. Compound 2 was the most active (MIC varying from 2.00 to 128 µg ml(-1) ). All the three substituted 2-aminothiophenes had a relatively important dose-dependent effect on Microsporum gypseum protein profile and content. These compounds affected the structure and dye fixation of macroconidia of this fungus. The overall results indicate that the tested substituted 2-aminothiophenes can be used as precursors for new antifungal drugs development.


Subject(s)
Antifungal Agents/pharmacology , Microsporum/drug effects , Microsporum/metabolism , Proteome , Thiophenes/pharmacology , Antifungal Agents/chemistry , Microbial Sensitivity Tests , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...