Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7: 39979, 2017 01 05.
Article in English | MEDLINE | ID: mdl-28054598

ABSTRACT

Reconstructing the dynamic response of the Antarctic ice sheets to warming during the Last Glacial Termination (LGT; 18,000-11,650 yrs ago) allows us to disentangle ice-climate feedbacks that are key to improving future projections. Whilst the sequence of events during this period is reasonably well-known, relatively poor chronological control has precluded precise alignment of ice, atmospheric and marine records, making it difficult to assess relationships between Antarctic ice-sheet (AIS) dynamics, climate change and sea level. Here we present results from a highly-resolved 'horizontal ice core' from the Weddell Sea Embayment, which records millennial-scale AIS dynamics across this extensive region. Counterintuitively, we find AIS mass-loss across the full duration of the Antarctic Cold Reversal (ACR; 14,600-12,700 yrs ago), with stabilisation during the subsequent millennia of atmospheric warming. Earth-system and ice-sheet modelling suggests these contrasting trends were likely Antarctic-wide, sustained by feedbacks amplified by the delivery of Circumpolar Deep Water onto the continental shelf. Given the anti-phase relationship between inter-hemispheric climate trends across the LGT our findings demonstrate that Southern Ocean-AIS feedbacks were controlled by global atmospheric teleconnections. With increasing stratification of the Southern Ocean and intensification of mid-latitude westerly winds today, such teleconnections could amplify AIS mass loss and accelerate global sea-level rise.

2.
Nat Commun ; 6: 8910, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26608558

ABSTRACT

Outlet glaciers grounded on a bed that deepens inland and extends below sea level are potentially vulnerable to 'marine ice sheet instability'. This instability, which may lead to runaway ice loss, has been simulated in models, but its consequences have not been directly observed in geological records. Here we provide new surface-exposure ages from an outlet of the East Antarctic Ice Sheet that reveal rapid glacier thinning occurred approximately 7,000 years ago, in the absence of large environmental changes. Glacier thinning persisted for more than two and a half centuries, resulting in hundreds of metres of ice loss. Numerical simulations indicate that ice surface drawdown accelerated when the otherwise steadily retreating glacier encountered a bedrock trough. Together, the geological reconstruction and numerical simulations suggest that centennial-scale glacier thinning arose from unstable grounding line retreat. Capturing these instability processes in ice sheet models is important for predicting Antarctica's future contribution to sea level change.

3.
Nature ; 526(7573): 421-5, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26469052

ABSTRACT

Atmospheric warming is projected to increase global mean surface temperatures by 0.3 to 4.8 degrees Celsius above pre-industrial values by the end of this century. If anthropogenic emissions continue unchecked, the warming increase may reach 8-10 degrees Celsius by 2300 (ref. 2). The contribution that large ice sheets will make to sea-level rise under such warming scenarios is difficult to quantify because the equilibrium-response timescale of ice sheets is longer than those of the atmosphere or ocean. Here we use a coupled ice-sheet/ice-shelf model to show that if atmospheric warming exceeds 1.5 to 2 degrees Celsius above present, collapse of the major Antarctic ice shelves triggers a centennial- to millennial-scale response of the Antarctic ice sheet in which enhanced viscous flow produces a long-term commitment (an unstoppable contribution) to sea-level rise. Our simulations represent the response of the present-day Antarctic ice-sheet system to the oceanic and climatic changes of four representative concentration pathways (RCPs) from the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. We find that substantial Antarctic ice loss can be prevented only by limiting greenhouse gas emissions to RCP 2.6 levels. Higher-emissions scenarios lead to ice loss from Antarctic that will raise sea level by 0.6-3 metres by the year 2300. Our results imply that greenhouse gas emissions in the next few decades will strongly influence the long-term contribution of the Antarctic ice sheet to global sea level.


Subject(s)
Computer Simulation , Freezing , Global Warming/statistics & numerical data , Ice Cover , Models, Theoretical , Seawater/analysis , Antarctic Regions , Atmosphere/chemistry , Global Warming/prevention & control , Greenhouse Effect/prevention & control , Greenhouse Effect/statistics & numerical data , Hot Temperature , Human Activities , Oceans and Seas , Time Factors , Uncertainty
4.
Sci Rep ; 5: 11673, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26115344

ABSTRACT

Recent paleoclimate reconstructions have challenged the traditional view that Northern Hemisphere insolation and associated feedbacks drove synchronous global climate and ice-sheet volume during the last glacial cycle. Here we focus on the response of the Patagonian Ice Sheet, and demonstrate that its maximum expansion culminated at 28,400 ± 500 years before present (28.4 ± 0.5 ka), more than 5,000 years before the minima in 65 °N summer insolation and the formally-defined Last Glacial Maximum (LGM) at 21,000 ± 2,000 years before present. To investigate the potential drivers of this early LGM (eLGM), we simulate the effects of orbital changes using a suite of climate models incorporating prescribed and evolving sea-ice anomalies. Our analyses suggest that Antarctic sea-ice expansion at 28.5 ka altered the location and intensity of the Southern Hemisphere storm track, triggering regional cooling over Patagonia of 5 °C that extends across the wider mid-southern latitudes. In contrast, at the LGM, continued sea-ice expansion reduced regional temperature and precipitation further, effectively starving the ice sheet and resulting in reduced glacial expansion. Our findings highlight the dominant role that orbital changes can play in driving Southern Hemisphere glacial climate via the sensitivity of mid-latitude regions to changes in Antarctic sea-ice extent.

5.
Nat Commun ; 5: 5107, 2014 Sep 29.
Article in English | MEDLINE | ID: mdl-25263015

ABSTRACT

During the last glacial termination, the upwelling strength of the southern polar limb of the Atlantic Meridional Overturning Circulation varied, changing the ventilation and stratification of the high-latitude Southern Ocean. During the same period, at least two phases of abrupt global sea-level rise--meltwater pulses--took place. Although the timing and magnitude of these events have become better constrained, a causal link between ocean stratification, the meltwater pulses and accelerated ice loss from Antarctica has not been proven. Here we simulate Antarctic ice sheet evolution over the last 25 kyr using a data-constrained ice-sheet model forced by changes in Southern Ocean temperature from an Earth system model. Results reveal several episodes of accelerated ice-sheet recession, the largest being coincident with meltwater pulse 1A. This resulted from reduced Southern Ocean overturning following Heinrich Event 1, when warmer subsurface water thermally eroded grounded marine-based ice and instigated a positive feedback that further accelerated ice-sheet retreat.

SELECTION OF CITATIONS
SEARCH DETAIL
...