Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Development ; 141(17): 3420-30, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25139858

ABSTRACT

The vesico-ureteric junction (VUJ) forms through a complex developmental program that connects the primordium of the upper urinary tract [the nephric duct (ND)] with that of the lower urinary tract (the cloaca). The signals that orchestrate the various tissue interactions in this program are poorly understood. Here, we show that two members of the EphA subfamily of receptor tyrosine kinases, EphA4 and EphA7, are specifically expressed in the mesenchyme surrounding the caudal ND and the cloaca, and that Epha4(-/-);Epha7(+/-) and Epha4(-/-);Epha7(-/-) (DKO) mice display distal ureter malformations including ureterocele, blind and ectopically ending ureters with associated hydroureter, megaureter and hydronephrosis. We trace these defects to a late or absent fusion of the ND with the cloaca. In DKO embryos, the ND extends normally and approaches the cloaca but the tip subsequently looses its integrity. Expression of Gata3 and Lhx1 and their downstream target Ret is severely reduced in the caudal ND. Conditional deletion of ephrin B2 from the ND largely phenocopies these changes, suggesting that EphA4/EphA7 from the pericloacal mesenchyme signal via ephrin B2 to mediate ND insertion. Disturbed activity of this signaling module may entail defects of the VUJ, which are frequent in the spectrum of congenital anomalies of the kidney and the urinary tract (CAKUT) in human newborns.


Subject(s)
Cloaca/embryology , Mesoderm/embryology , Nephrons/embryology , Nephrons/metabolism , Receptor, EphA4/metabolism , Receptor, EphA7/metabolism , Signal Transduction , Animals , Cloaca/metabolism , Cloaca/pathology , Disease Progression , Down-Regulation , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Ephrin-B2/metabolism , GATA3 Transcription Factor/metabolism , Gene Deletion , Gene Expression Regulation, Developmental , Humans , Hydronephrosis/embryology , Hydronephrosis/genetics , Hydronephrosis/pathology , Kidney/abnormalities , Kidney/enzymology , Kidney/metabolism , Kidney/pathology , LIM-Homeodomain Proteins/metabolism , Membrane Fusion , Mesoderm/metabolism , Mesoderm/pathology , Mice , Mice, Knockout , Nephrons/pathology , PAX2 Transcription Factor/metabolism , Phenotype , Proto-Oncogene Proteins c-ret/metabolism , Signal Transduction/genetics , Transcription Factors/metabolism , Ureter/abnormalities , Ureter/embryology , Ureter/metabolism , Ureter/pathology
2.
Dev Biol ; 380(1): 25-36, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23685333

ABSTRACT

The mammalian urogenital system derives from multipotent progenitor cells of different germinal tissues. The contribution of individual sub-populations to specific components of the mature system, and the spatiotemporal restriction of the respective lineages have remained poorly characterized. Here, we use comparative expression analysis to delineate sub-regions within the developing urogenital system that express the T-box transcription factor gene Tbx18. We show that Tbx18 is transiently expressed in the epithelial lining and the subjacent mesenchyme of the urogenital ridge. At the onset of metanephric development Tbx18 expression occurs in a band of mesenchyme in between the metanephros and the Wolffian duct but is subsequently restricted to the mesenchyme surrounding the distal ureter stalk. Genetic lineage tracing reveals that former Tbx18(+) cells of the urogenital ridge and the metanephric field contribute substantially to the adrenal glands and gonads, to the kidney stroma, the ureteric and the bladder mesenchyme. Loss of Tbx18 does not affect differentiation of the adrenal gland, the gonad, the bladder and the kidney. However, ureter differentiation is severely disturbed as the mesenchymal lineage adopts a stromal rather than a ureteric smooth muscle fate. DiI labeling and tissue recombination experiments show that the restriction of Tbx18 expression to the prospective ureteric mesenchyme does not reflect an active condensation process but is due to a specific loss of Tbx18 expression in the mesenchyme out of range of signals from the ureteric epithelium. These cells either contribute to the renal stroma or undergo apoptosis aiding in severing the ureter from its surrounding tissues. We show that Tbx18-deficient cells do not respond to epithelial signals suggesting that Tbx18 is required to prepattern the ureteric mesenchyme. Our study provides new insights into the molecular diversity of urogenital progenitor cells and helps to understand the specification of the ureteric mesenchymal sub-lineage.


Subject(s)
Stromal Cells/cytology , T-Box Domain Proteins/metabolism , Urogenital System/embryology , Animals , Apoptosis , Cell Lineage , Crosses, Genetic , Female , Gene Expression Regulation, Developmental , Gene Knock-In Techniques , In Situ Hybridization , Kidney/embryology , Male , Mesoderm/metabolism , Mice , Mice, Transgenic , Muscle, Smooth/pathology , Organ Culture Techniques , Stem Cells/cytology , Stromal Cells/metabolism , T-Box Domain Proteins/genetics , Time Factors , Ureter/embryology , Ureter/pathology
3.
Development ; 139(17): 3099-108, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22833126

ABSTRACT

Smooth muscle cells (SMCs) are a key component of many visceral organs, including the ureter, yet the molecular pathways that regulate their development from mesenchymal precursors are insufficiently understood. Here, we identified epithelial Wnt7b and Wnt9b as possible ligands of Fzd1-mediated ß-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated ureteric mesenchyme. Mice with a conditional deletion of Ctnnb1 in the ureteric mesenchyme exhibited hydroureter and hydronephrosis at newborn stages due to functional obstruction of the ureter. Histological analysis revealed that the layer of undifferentiated mesenchymal cells directly adjacent to the ureteric epithelium did not undergo characteristic cell shape changes, exhibited reduced proliferation and failed to differentiate into SMCs. Molecular markers for prospective SMCs were lost, whereas markers of the outer layer of the ureteric mesenchyme fated to become adventitial fibroblasts were expanded to the inner layer. Conditional misexpression of a stabilized form of Ctnnb1 in the prospective ureteric mesenchyme resulted in the formation of a large domain of cells that exhibited histological and molecular features of prospective SMCs and differentiated along this lineage. Our analysis suggests that Wnt signals from the ureteric epithelium pattern the ureteric mesenchyme in a radial fashion by suppressing adventitial fibroblast differentiation and initiating smooth muscle precursor development in the innermost layer of mesenchymal cells.


Subject(s)
Hypoxanthine Phosphoribosyltransferase/genetics , Myoblasts, Smooth Muscle/physiology , Proto-Oncogene Proteins/metabolism , Ureter/embryology , Wnt Proteins/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Animals , Cell Differentiation/physiology , Crosses, Genetic , Fluorescence , Gene Knock-In Techniques , In Situ Hybridization , Mice , Myoblasts, Smooth Muscle/metabolism , Ureter/cytology , Ureter/metabolism , beta Catenin/deficiency
4.
Hum Mol Genet ; 19(24): 4918-29, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20881014

ABSTRACT

Congenital ureter anomalies, including hydroureter, affect up to 1% of the newborn children. Despite the prevalence of these developmental abnormalities in young children, the underlying molecular causes are only poorly understood. Here, we show that the high mobility group domain transcription factor Sox9 plays an important role in ureter development in the mouse. Transient Sox9 expression was detected in the undifferentiated ureteric mesenchyme and inactivation of Sox9 in this domain resulted in strong proximal hydroureter formation due to functional obstruction. Loss of Sox9 did not affect condensation, proliferation and apoptosis of the undifferentiated mesenchyme, but perturbed cyto-differentiation into smooth muscle cells (SMCs). Expression of genes encoding extracellular matrix (ECM) components was strongly reduced, suggesting that deficiency in ECM composition and/or signaling may underlie the observed defects. Prolonged expression of Sox9 in the ureteric mesenchyme led to increased deposition of ECM components and SMC dispersal. Furthermore, Sox9 genetically interacts with the T-box transcription factor 18 gene (Tbx18) during ureter development at two levels--as a downstream mediator of Tbx18 function and in a converging pathway. Together, our results argue that obstructive uropathies in campomelic dysplasia patients that are heterozygous for mutations in and around SOX9 arise from a primary requirement of Sox9 in the development of the ureteric mesenchyme.


Subject(s)
Cell Differentiation , Hydronephrosis/genetics , Hydronephrosis/pathology , Mesoderm/pathology , Myocytes, Smooth Muscle/pathology , SOX9 Transcription Factor/genetics , Ureter/pathology , Animals , Cell Differentiation/genetics , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Extracellular Matrix/genetics , Gene Expression Regulation, Developmental , Gene Silencing , Kidney/metabolism , Kidney/pathology , Mesoderm/metabolism , Mice , Mutation/genetics , Myocytes, Smooth Muscle/metabolism , SOX9 Transcription Factor/metabolism , Ureter/growth & development , Ureter/metabolism
5.
J Biol Chem ; 281(40): 29693-702, 2006 Oct 06.
Article in English | MEDLINE | ID: mdl-16901908

ABSTRACT

Cellular calcium homeostasis is regulated by hormones and neurotransmitters, resulting in the activation of a variety of proteins, in particular, channel proteins of the plasma membrane and of intracellular compartments. Such channels are, for example, TRP channels of the TRPC protein family that are activated by various mediators from receptor-stimulated signaling cascades. In Drosophila, two TRPC channels, TRP and TRPL, are involved in phototransduction. In addition, a third Drosophila TRPC channel, TRPgamma, has been identified and described as an auxiliary subunit of TRPL. Beyond it, our data show that heterologously expressed TRPgamma formed a receptor-activated, outwardly rectifying cation channel independent from TRPL co-expression. Analysis of the activation mechanism revealed that TRPgamma is activated by various polyunsaturated fatty acids generated in a phospholipase C- and phospholipase A(2)-dependent manner. The most potent activator of TRPgamma, the stable analogue of arachidonic acid, 5,8,11,14-eicosatetraynoic acid, induced currents in single channel recordings. Here we show that upon heterologous expression TRPgamma forms a homomeric channel complex that is activated by polyunsaturated fatty acids as mediators of receptor-dependent signaling pathways. Reverse transcription PCR analysis showed that TRPgamma is expressed in Drosophila heads and bodies. Its body-wide expression pattern and its activation mechanism suggest that TRPgamma forms a fly cation channel responsible for the regulation of intracellular calcium in a variety of hormonal signaling cascades.


Subject(s)
Drosophila Proteins/physiology , Drosophila melanogaster/metabolism , Fatty Acids, Unsaturated/physiology , Transient Receptor Potential Channels/physiology , Animals , Calcium Signaling/physiology , Cell Line , Drosophila Proteins/biosynthesis , Drosophila Proteins/genetics , Drosophila melanogaster/physiology , Humans , Insect Hormones/physiology , RNA, Messenger/metabolism , Transient Receptor Potential Channels/biosynthesis , Transient Receptor Potential Channels/genetics
SELECTION OF CITATIONS
SEARCH DETAIL