Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Epigenetics Chromatin ; 4: 7, 2011 May 05.
Article in English | MEDLINE | ID: mdl-21545704

ABSTRACT

BACKGROUND: Development of human tissue is influenced by a combination of intrinsic biological signals and extrinsic environmental stimuli, both of which are mediated by epigenetic regulation, including DNA methylation. However, little is currently known of the normal acquisition or loss of epigenetic markers during fetal and postnatal development. RESULTS: The DNA methylation status of over 1000 CpGs located in the regulatory regions of nearly 800 genes was evaluated in five somatic tissues (brain, kidney, lung, muscle and skin) from eight normal second-trimester fetuses. Tissue-specific differentially methylated regions (tDMRs) were identified in 195 such loci. However, comparison with corresponding data from trisomic fetuses (five trisomy 21 and four trisomy 18) revealed relatively few DNA methylation differences associated with trisomy, despite such conditions having a profound effect on development. Of interest, only 17% of the identified fetal tDMRs were found to maintain this same tissue-specific DNA methylation in adult tissues. Furthermore, 10% of the sites analyzed, including sites associated with imprinted genes, had a DNA methylation difference of >40% between fetus and adult. This plasticity of DNA methylation over development was further confirmed by comparison with similar data from embryonic stem cells, with the most altered methylation levels being linked to domains with bivalent histone modifications. CONCLUSIONS: Most fetal tDMRs seem to reflect transient DNA methylation changes during development rather than permanent epigenetic signatures. The extensive tissue-specific and developmental-stage specific nature of DNA methylation will need to be elucidated to identify abnormal patterns of DNA methylation associated with abnormal development or disease.

2.
J Biol Chem ; 285(45): 35113-22, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20810656

ABSTRACT

Genomic integrity is maintained by the coordinated interaction of many DNA damage response pathways, including checkpoints, DNA repair processes, and cell cycle restart. In Saccharomyces cerevisiae, the BRCA1 C-terminal domain-containing protein Rtt107/Esc4 is required for restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. Rtt107 and its interaction partner Slx4 are phosphorylated during the initial phase of DNA damage response by the checkpoint kinases Mec1 and Tel1. Because the natural chromatin template plays an important role during the DNA damage response, we tested whether chromatin modifications affected the requirement for Rtt107 and Slx4 during DNA damage repair. Here, we report that the sensitivity to DNA-damaging agents of rtt107Δ and slx4Δ mutants was rescued by inactivation of the chromatin regulatory pathway leading to H3 K79 trimethylation. Further analysis revealed that lack of Dot1, the H3 K79 methyltransferase, led to activation of the translesion synthesis pathway, thereby allowing the survival in the presence of DNA damage. The DNA damage-induced phosphorylation of Rtt107 and Slx4, which was mutually dependent, was not restored in the absence of Dot1. The antagonistic relationship between Rtt107 and Dot1 was specific for DNA damage-induced phenotypes, whereas the genomic instability caused by loss of Rtt107 was not rescued. These data revealed a multifaceted functional relationship between Rtt107 and Dot1 in the DNA damage response and maintenance of genome integrity.


Subject(s)
Chromatin/metabolism , DNA Damage/physiology , Genomic Instability/physiology , Histone-Lysine N-Methyltransferase/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , DNA Repair/physiology , DNA Replication/physiology , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Histone-Lysine N-Methyltransferase/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Methylation , Mutation , Nuclear Proteins/genetics , Phosphorylation/physiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
3.
Proc Natl Acad Sci U S A ; 106(34): 14716-21, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19617551

ABSTRACT

Children reared in unfavorable socioeconomic circumstances show increased susceptibility to the chronic diseases of aging when they reach the fifth and sixth decades of life. One mechanistic hypothesis for this phenomenon suggests that social adversity in early life programs biological systems in a manner that persists across decades and thereby accentuates vulnerability to disease. Here we examine the basic tenets of this hypothesis by performing genome-wide transcriptional profiling in healthy adults who were either low or high in socioeconomic status (SES) in early life. Among subjects with low early-life SES, there was significant up-regulation of genes bearing response elements for the CREB/ATF family of transcription factors that conveys adrenergic signals to leukocytes, and significant down-regulation of genes with response elements for the glucocorticoid receptor, which regulates the secretion of cortisol and transduces its antiinflammatory actions in the immune system. Subjects from low-SES backgrounds also showed increased output of cortisol in daily life, heightened expression of transcripts bearing response elements for NF-kappaB, and greater stimulated production of the proinflammatory cytokine interleukin 6. These disparities were independent of subjects' current SES, lifestyle practices, and perceived stress. Collectively, these data suggest that low early-life SES programs a defensive phenotype characterized by resistance to glucocorticoid signaling, which in turn facilitates exaggerated adrenocortical and inflammatory responses. Although these response patterns could serve adaptive functions during acute threats to well-being, over the long term they might exact an allostatic toll on the body that ultimately contributes to the chronic diseases of aging.


Subject(s)
Glucocorticoids/metabolism , Interleukin-6/metabolism , Receptors, Glucocorticoid/metabolism , Signal Transduction , Social Class , Adult , British Columbia , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Female , Gene Expression Profiling , Humans , Hydrocortisone/metabolism , Immunoassay , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Male , NF-kappa B/metabolism , Oligonucleotide Array Sequence Analysis , Promoter Regions, Genetic/genetics , Response Elements/genetics , Reverse Transcriptase Polymerase Chain Reaction , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL