Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
ACS Omega ; 9(5): 5224-5229, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343910

ABSTRACT

We calculate, using time-dependent density functional theory, absorption and circular dichroism (CD) spectra for a series of small helical gold nanorod structures with a width of 0.6 nm and length increasing from 0.7 nm for Au24 to 1.9 nm for Au56. For a low-energy window, ranging from 1.7 to 4.1 eV, broadening the lines in the absorption spectra results in a low energy peak which previous studies have identified as the (localized) plasmon resonance. As expected, the absorption peak position of the plasmon resonance systematically redshifts as the length of the nanorod increases. However, trends in the CD and straightforwardly broadened CD spectra are more difficult to discern. We introduce the idea of an absolute value CD spectrum and show that broadening the lines results in a low energy peak that has not previously been reported. The peak position systematically redshifts as the length of the nanorod increases but over a significantly smaller range than that for the absorption spectrum.

2.
J Chem Theory Comput ; 20(3): 1214-1227, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38291561

ABSTRACT

Polariton chemistry has attracted great attention as a potential route to modify chemical structure, properties, and reactivity through strong interactions among molecular electronic, vibrational, or rovibrational degrees of freedom. A rigorous theoretical treatment of molecular polaritons requires the treatment of matter and photon degrees of freedom on equal quantum mechanical footing. In the limit of molecular electronic strong or ultrastrong coupling to one or a few molecules, it is desirable to treat the molecular electronic degrees of freedom using the tools of ab initio quantum chemistry, yielding an approach we refer to as ab initio cavity quantum electrodynamics, where the photon degrees of freedom are treated at the level of cavity quantum electrodynamics. Here, we present an approach called Cavity Quantum Electrodynamics Complete Active Space Configuration Interaction theory to provide ground- and excited-state polaritonic surfaces with a balanced description of strong correlation effects among electronic and photonic degrees of freedom. This method provides a platform for ab initio cavity quantum electrodynamics when both strong electron correlation and strong light-matter coupling are important and is an important step toward computational approaches that yield multiple polaritonic potential energy surfaces and couplings that can be leveraged for ab initio molecular dynamics simulations of polariton chemistry.

3.
Mater Adv ; 4(23): 6321-6332, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38021465

ABSTRACT

There is a growing demand for new fluorescent small molecule dyes for solid state applications in the photonics and optoelectronics industry. Thiazolo[5,4-d]thiazole (TTz) is an organic heterocycle moiety which has previously shown remarkable properties as a conjugated polymer and in solution-based studies. For TTz-based small molecules to be incorporated in solid-state fluorescence-based optical devices, a thorough elucidation of their structure-photophysical properties needs to be established. Herein, we have studied four TTz-based materials functionalized with alkyl appendages of varying carbon chain lengths. We report the single crystal structures of the TTz derivatives, three of which were previously unknown. The packing modes of the crystals reveal that molecular arrangements are largely governed by a chorus of synergistic intermolecular non-covalent interactions. Three crystals packed in herringbone mode and one crystal packed in slipped stacks proving that alkyl appendages modulate structural organization in TTz-based materials. Steady state and time-resolved photophysical properties of these crystals were studied via diffuse-reflectance, micro-Raman, and photoluminescence spectroscopy. The crystals fluoresce from orange-red to blue spanning through the whole gamut of the visible spectrum. We have established that photophysical properties are a function of crystal packing in symmetrically substituted TTz-based materials. This correlation was then utilized to fabricate crystalline blends. We demonstrate, for the first time, that symmetrically substituted donor-acceptor-donor TTz-based materials can be used for phosphor-converted color-tuning and white-light emission. Given the cost effectiveness, ease of synthesis and now a structure-photophysics correlation, we present a compelling case for the adoption of TTz-based materials in solid-state photonic and fluorescence-based optical devices.

4.
J Clin Med ; 12(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37762789

ABSTRACT

Acute lung injury in COVID-19 results in diffuse alveolar damage with disruption of the alveolar-capillary barrier, coagulation activation, alveolar fibrin deposition and pulmonary capillary thrombi. Nebulized recombinant tissue plasminogen activator (rt-PA) has the potential to facilitate localized thrombolysis in the alveolar compartment and improve oxygenation. In this proof-of-concept safety study, adults with COVID-19-induced respiratory failure and a <300 mmHg PaO2/FiO2 (P/F) ratio requiring invasive mechanical ventilation (IMV) or non-invasive respiratory support (NIRS) received nebulized rt-PA in two cohorts (C1 and C2), alongside standard of care, between 23 April-30 July 2020 and 21 January-19 February 2021, respectively. Matched historical controls (MHC; n = 18) were used in C1 to explore efficacy. Safety co-primary endpoints were treatment-related bleeds and <1.0-1.5 g/L fibrinogen reduction. A variable dosing strategy with clinical efficacy endpoint and minimal safety concerns was determined in C1 for use in C2; patients were stratified by ventilation type to receive 40-60 mg rt-PA daily for ≤14 days. Nine patients in C1 (IMV, 6/9; NIRS, 3/9) and 26 in C2 (IMV, 12/26; NIRS, 14/26) received nebulized rt-PA for a mean (SD) of 6.7 (4.6) and 9.1(4.6) days, respectively. Four bleeds (one severe, three mild) in three patients were considered treatment related. There were no significant fibrinogen reductions. Greater improvements in mean P/F ratio from baseline to study end were observed in C1 compared with MHC (C1; 154 to 299 vs. MHC; 154 to 212). In C2, there was no difference in the baseline P/F ratio of NIRS and IMV patients. However, a larger improvement in the P/F ratio occurred in NIRS patients (NIRS; 126 to 240 vs. IMV; 120 to 188) and fewer treatment days were required (NIRS; 7.86 vs. IMV; 10.5). Nebulized rt-PA appears to be well-tolerated, with a trend towards improved oxygenation, particularly in the NIRS group. Randomized clinical trials are required to demonstrate the clinical effect significance and magnitude.

5.
Blood Adv ; 7(3): 458-467, 2023 02 14.
Article in English | MEDLINE | ID: mdl-35839077

ABSTRACT

Adeno-associated virus (AAV) gene therapy has the potential to functionally cure hemophilia B by restoring factor (F)IX concentrations into the normal range. Next-generation AAV therapies express a naturally occurring gain-of-function FIX variant, FIX-Padua (R338L-FIX), that increases FIX activity (FIX:C) by approximately eightfold compared with wild-type FIX (FIX-WT). Previous studies have shown that R338L-FIX activity varies dramatically across different clinical FIX:C assays, which complicates the monitoring and management of patients. To better understand mechanisms that contribute to R338L-FIX assay discrepancies, we characterized the performance of R338L-FIX in 13 1-stage clotting assays (OSAs) and 2 chromogenic substrate assays (CSAs) in a global field study. This study produced the largest R338L-FIX assay dataset to date and confirmed that clinical FIX:C assay results vary over threefold. Both phospholipid and activating reagents play a role in OSA discrepancies. CSA generated the most divergent FIX:C results. Manipulation of FIX:C CSA kits demonstrated that specific activity gains for R338L-FIX were most profound at lower FIX:C concentrations and that these effects were enhanced during the early phases of FXa generation. Supplementing FX into CSA had the effect of dampening FIX-WT activity relative to R338L-FIX activity, suggesting that FX impairs WT tenase formation to a greater extent than R338L-FIX tenase. Our data describe the scale of R338L-FIX assay discrepancies and provide insights into the causative mechanisms that will help establish best practices for the measurement of R338L-FIX activity in patients after gene therapy.


Subject(s)
Factor IX , Hemophilia B , Humans , Factor IX/genetics , Hemophilia B/diagnosis , Hemophilia B/genetics , Hemophilia B/therapy , Blood Coagulation Tests , Cysteine Endopeptidases
6.
J Chem Phys ; 156(15): 154103, 2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35459324

ABSTRACT

We combine ab initio molecular electronic Hamiltonians with a cavity quantum electrodynamics model for dissipative photonic modes and apply mean-field theories to the ground- and excited-states of resulting polaritonic systems. In particular, we develop a non-Hermitian configuration interaction singles theory for mean-field ground- and excited-states of the molecular system strongly interacting with a photonic mode and apply these methods to elucidating the phenomenology of paradigmatic polaritonic systems. We leverage the Psi4Numpy framework to yield open-source and accessible reference implementations of these methods.

7.
Article in English | MEDLINE | ID: mdl-34948948

ABSTRACT

The climate crisis threatens to exacerbate numerous climate-sensitive health risks, including heatwave mortality, malnutrition from reduced crop yields, water- and vector-borne infectious diseases, and respiratory illness from smog, ozone, allergenic pollen, and wildfires. Recent reports from the Intergovernmental Panel on Climate Change stress the urgent need for action to mitigate climate change, underscoring the need for more scientific assessment of the benefits of climate action for health and wellbeing. Project Drawdown has analyzed more than 80 solutions to address climate change, building on existing technologies and practices, that could be scaled to collectively limit warming to between 1.5° and 2 °C above preindustrial levels. The solutions span nine major sectors and are aggregated into three groups: reducing the sources of emissions, maintaining and enhancing carbon sinks, and addressing social inequities. Here we present an overview of how climate solutions in these three areas can benefit human health through improved air quality, increased physical activity, healthier diets, reduced risk of infectious disease, and improved sexual and reproductive health, and universal education. We find that the health benefits of a low-carbon society are more substantial and more numerous than previously realized and should be central to policies addressing climate change. Much of the existing literature focuses on health effects in high-income countries, however, and more research is needed on health and equity implications of climate solutions, especially in the Global South. We conclude that adding the myriad health benefits across multiple climate change solutions can likely add impetus to move climate policies faster and further.


Subject(s)
Air Pollution , Ozone , Air Pollution/analysis , Climate Change , Humans , Ozone/analysis
8.
J Phys Chem Lett ; 12(20): 4958-4964, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34010003

ABSTRACT

The influence of external dielectric environments is well understood for 2D semiconductor materials but overlooked for colloidally grown II-VI nanoplatelets (NPLs). In this work, we synthesize MX (M = Cd, Hg; X = Se, Te) NPLs of varying thicknesses and apply the Elliott model to extract exciton binding energies-reporting values in good agreement with prior methods and extending to less studied cadmium telluride and mercury chalcogenide NPLs. We find that the exciton binding energy is modulated both by the relative effect of internal vs external dielectric and by the thickness of the semiconductor material. An analytical model shows dielectric screening increases the exciton binding energy relative to the bulk by distorting the Coulombic potential across the NPL surface. We further confirm this effect by decreasing and recovering the exciton binding energy of HgTe NPLs through washing in polarizable solvents. Our results illustrate NPLs are colloidal analogues of van der Waals 2D semiconductors and point to surface modification as an approach to control photophysics and device properties.

9.
Blood ; 137(1): 103-114, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33410894

ABSTRACT

Thrombin generation is pivotal to both physiological blood clot formation and pathological development of disseminated intravascular coagulation (DIC). In critical illness, extensive cell damage can release histones into the circulation, which can increase thrombin generation and cause DIC, but the molecular mechanism is not clear. Typically, thrombin is generated by the prothrombinase complex, comprising activated factor X (FXa), activated cofactor V (FVa), and phospholipids to cleave prothrombin in the presence of calcium. In this study, we found that in the presence of extracellular histones, an alternative prothrombinase could form without FVa and phospholipids. Histones directly bind to prothrombin fragment 1 (F1) and fragment 2 (F2) specifically to facilitate FXa cleavage of prothrombin to release active thrombin, unlike FVa, which requires phospholipid surfaces to anchor the classical prothrombinase complex. In vivo, histone infusion into mice induced DIC, which was significantly abrogated when prothrombin F1 + F2 were infused prior to histones, to act as decoy. In a cohort of intensive care unit patients with sepsis (n = 144), circulating histone levels were significantly elevated in patients with DIC. These data suggest that histone-induced alternative prothrombinase without phospholipid anchorage may disseminate intravascular coagulation and reveal a new molecular mechanism of thrombin generation and DIC development. In addition, histones significantly reduced the requirement for FXa in the coagulation cascade to enable clot formation in factor VIII (FVIII)- and FIX-deficient plasma, as well as in FVIII-deficient mice. In summary, this study highlights a novel mechanism in coagulation with therapeutic potential in both targeting systemic coagulation activation and correcting coagulation factor deficiency.


Subject(s)
Disseminated Intravascular Coagulation/metabolism , Factor V/metabolism , Factor X/metabolism , Factor Xa/metabolism , Histones/metabolism , Animals , Blood Coagulation , Humans , Mice , Mice, Inbred C57BL , Thromboplastin/metabolism
10.
J Phys Chem Lett ; 11(21): 9063-9069, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-33045837

ABSTRACT

We present a non-Hermitian formulation of the polaritonic structure of azobenzene strongly coupled to a photonic mode that explicitly accounts for the fleeting nature of the photon-molecule interaction. This formalism reveals that the polaritonic nonadiabatic couplings that facilitate cis-trans isomerization can be dramatically modified by photonic dissipation. We perform Fewest-Switches Surface Hopping dynamics on the surfaces that derive from our non-Hermitian formalism and find that the polaritonic isomerization yields are strongly suppressed for moderate dissipation rates and that cavity-free isomerization dynamics are recovered under large dissipation rates. These findings highlight the important role that the finite lifetime of photonic degrees of freedom play in polaritonic chemistry.

11.
Res Pract Thromb Haemost ; 4(2): 334-342, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32110765

ABSTRACT

BACKGROUND: Impaired thrombin generation (TG) in patients with acquired coagulopathy, is due to low coagulation factors and thrombocytopenia. The latter is typically treated with platelet transfusions and the former with plasma and occasionally with prothrombin complex concentrates (PCCs). We hypothesized that manipulating the concentrations of coagulation factors might result in restoration of platelet-dependent TG over and above that of simple replacement therapy. OBJECTIVE: To investigate the influence of PCCs on impaired TG secondary to thrombocytopenia. METHODS: TG was evaluated by thrombin generation assay using a thrombocytopenia model in which normal plasma samples with varying platelet counts (20-300 × 109/L) were spiked with PCCs (25%-150% increase in plasma PCC levels). RESULTS: PCCs and platelets significantly increased TG in a dose-dependent manner in vitro. Two-way repeated measures of analysis of variance showed variance in peak height, area under the curve, time to peak, and velocity. This variance explained, respectively, by levels of PCC was 47, 59, 25 and 53%; by platelet count was 45, 28, 44, and 14%; by the combination was 80, 67, 70, and 62% variance; and a combination with additional interaction was 91, 84, 76, and 68%. TG at a platelet count 40 × 109/L with an approximate 25% increase in PCC concentration was similar to TG at 150 × 109/L. Similarly, patient samples spiked ex vivo with PCCs also showed highly significant improvements in TG. CONCLUSIONS: Impaired TG of thrombocytopenia is improved by PCCs, supporting the need for additional studies in complex coagulopathies characterized by mild to moderate thrombocytopenia and abnormal coagulation.

12.
ACS Appl Mater Interfaces ; 11(44): 41347-41355, 2019 Nov 06.
Article in English | MEDLINE | ID: mdl-31652047

ABSTRACT

The efficiency of a thermophotovoltaic (TPV) system depends critically upon the spectral selectivity and stability of an emitter, which may operate most effectively at temperatures in excess of 1000 °C. We computationally design and experimentally demonstrate a novel selective emitter design based on multilayer nanostructures, robust to off-normal emission angles. A computational search of the material and temperature compatibility space of simple emitter designs motivates new material classes and identifies several promising multilayer nanostructure designs for both TPV absorber and emitter applications. One such structure, comprising a thin (<100 nm) tunable TixAl1-xN (TiAlN) absorber and refractory oxide Bragg reflector is grown on W metal foil. In agreement with simulations, the emitter achieves record spectral efficiency (43.4%) and power density (3.6 W/cm2) for an emitter with at least 1 h of high temperature (>800 °C) operation.

13.
mSphere ; 4(2)2019 03 13.
Article in English | MEDLINE | ID: mdl-30867326

ABSTRACT

Balancing gene expression is a fundamental challenge of all cell types. To properly regulate transcription on a genome-wide level, there are myriad mechanisms employed by the cell. One layer to this regulation is through spatial positioning, with particular chromosomal loci exerting an influence on transcription throughout a region. Many coregulated gene families utilize spatial positioning to coordinate transcription, with functionally related genes clustering together which can allow coordinated expression via adjacent gene coregulation. The mechanisms underlying this process have not been elucidated, though there are many coregulated gene families that exhibit this genomic distribution. In the present study, we tested for a role for the enhancer-promoter (EP) hypothesis, which demonstrates that regulatory elements can exert transcriptional effects over a broad distance, in coordinating transcriptional coregulation using budding yeast, Saccharomyces cerevisiae We empirically validated the EP model, finding that the genomic distance a promoter can affect varies by locus, which can profoundly affect levels of transcription, phenotype, and the extent of transcriptional disruption throughout a genomic region. Using the nitrogen metabolism, ribosomal protein, toxin response, and heat shock gene families as our test case, we report functionally clustered genes localize to genomic loci that are more conducive to transcriptional regulation at a distance compared to the unpaired members of the same families. Furthermore, we report that the coregulation of functional clusters is dependent, in part, on chromatin maintenance and remodeling, providing one mechanism underlying adjacent gene coregulation.IMPORTANCE The two-dimensional, physical positioning of genes along a chromosome can impact proper transcriptional regulation throughout a genomic region. The transcription of neighboring genes is correlated in a genome-wide manner, which is a characteristic of eukaryotes. Many coregulated gene families can be found clustered with another member of the same set-which can result in adjacent gene coregulation of the pair. Due to the myriad gene families that exhibit a nonrandom genomic distribution, there are likely multiple mechanisms working in concert to properly regulate transcriptional coordination of functionally clustered genes. In this study, we utilized budding yeast in an attempt to elucidate mechanisms that underlie this coregulation: testing and empirically validating the enhancer-promoter hypothesis in this species and reporting that functionally related genes cluster to genomic regions that are more conducive to transcriptional regulation at a distance. These clusters rely, in part, on chromatin maintenance and remodelers to maintain proper transcriptional coordination. Our work provides insight into the mechanisms underlying adjacent gene coregulation.


Subject(s)
Genome, Fungal , Multigene Family , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Gene Expression Regulation, Fungal , Heat-Shock Proteins/genetics , Nitrogen/metabolism , Ribosomal Proteins/genetics , Transcription Factors/genetics
14.
Aust J Prim Health ; 2018 Jul 30.
Article in English | MEDLINE | ID: mdl-30056827

ABSTRACT

This paper reviews the effect of a primary care financing scheme introduced in New Zealand as a component of the New Zealand Primary Health Care Strategy, a comprehensive reform of the way that primary healthcare was governed, financed and delivered. The population-based funding formulae incorporated an area-based measure of social deprivation and ethnicity in an explicit attempt to improve access to care for certain population groups and fund social interventions aimed at addressing conditions that lead to improved health outcomes. The New Zealand experience shows that introducing a nationwide, comprehensive program to improve access and reduce health disparities is possible. However, the effect of this effort on reducing health disparities is not entirely clear because success ultimately relies on local implementation of a complex set of interventions that need to be evaluated more rigorously. In addition, the partial subsidies for first contact care that came with the Strategy have been shown to improve access, but, the success of this approach relies on compliance by private-practising general practitioners with a fee reduction regimen, which is subject to local variation.

15.
mSphere ; 3(3)2018 06 27.
Article in English | MEDLINE | ID: mdl-29898982

ABSTRACT

It is essential that cells orchestrate gene expression for the specific niche that they occupy, and this often requires coordination of the expression of large sets of genes. There are multiple regulatory systems that exist for modulation of gene expression, including the adjacent-gene coregulation of the rRNA and ribosome biogenesis and ribosomal protein families. Both gene families exhibit a nonrandom genomic distribution, often clustered directly adjacent to another member of the same family, which results in a tighter transcriptional coordination among adjacent paired genes than that of the unpaired genes within each regulon and can result in a shared promoter that coordinates expression of the pairs. This nonrandom genomic distribution has been seen in a few functionally related gene families, and many of these functional pairings are conserved across divergent fungal lineages. To date, the significance of these observations has not been extended in a systematic way to characterize how prevalent the role of adjacent-gene coregulation is in transcriptional regulation. In the present study, we systematically analyzed the transcriptional coherence of the functional pairs compared to the singletons within all gene families defined by the Gene Ontology Slim designation, using Saccharomyces cerevisiae as a model system, finding that clusters exhibit a tighter transcriptional correlation under specific contexts. We found that the longer a functional pairing is conserved the tighter its response to broad stress and nutritional responses, that roughly 25% of gene families exhibit a nonrandom genomic distribution, and that many of these clusters are conserved. This suggests that adjacent-gene coregulation is a widespread, yet underappreciated, transcriptional mechanism.IMPORTANCE The spatial positioning of genes throughout the genome arrangement can alter their expression in many eukaryotic organisms. Often this results in a genomic context-specific effect on transcription. One example of this is through the clustering of functionally related genes, which results in adjacent-gene coregulation in the budding yeast Saccharomyces cerevisiae In the present study, we set out to systematically characterize the prevalence of this phenomenon, finding the genomic organization of functionally related genes into clusters is a characteristic of myriad gene families. These arrangements are found in many evolutionarily divergent fungi and thus represent a widespread, yet underappreciated, layer of transcriptional regulation.


Subject(s)
Gene Expression Regulation, Fungal , Gene Order , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Adaptation, Biological , Gene Regulatory Networks , Multigene Family , Stress, Physiological
16.
J Am Board Fam Med ; 31(3): 479-483, 2018.
Article in English | MEDLINE | ID: mdl-29743230

ABSTRACT

INTRODUCTION: Health inequities persist in Canada and the United States. Both countries show differential health status and health care quality by social characteristics, making zip or postal code a greater predictor of health than genetics. Many social determinants of health overlap in the same individuals or communities, exacerbating their vulnerability. Many of the contributing factors and problems are structural and evade simple solutions. METHODS: In March 2017 a binational Canada-US symposium was held in Washington DC involving 150 primary care thought leaders, including clinicians, researchers, patients, and policy makers to address transformation in integrated primary care. This commentary summarizes the session's principal insights and solutions of the session tackling health inequities at policy and delivery levels. DISCUSSION: The solution lies in intervening proactively to reduce disparities-developing risk-adjustment measures that integrate social factors; increasing the socioeconomic, racial, and ethnic diversity of health providers; teaching cultural humility; supporting community-oriented primary care; and integrating equity considerations into health system funding. We propose moving from retrospective analysis to proactive measures; from equality to equity; from needs-based to strength-based approaches; and from an individual to a population focus.


Subject(s)
Health Equity/organization & administration , Health Status Disparities , Primary Health Care/organization & administration , Quality Improvement , Canada , Congresses as Topic , Cultural Diversity , Health Personnel/organization & administration , Social Determinants of Health/ethnology , Socioeconomic Factors , United States
17.
Sci Am ; 316(5): 10, 2017 Apr 18.
Article in English | MEDLINE | ID: mdl-28437422
18.
Science ; 356(6335): 251-252, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28428386
19.
Semin Thromb Hemost ; 43(2): 135-142, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28052305

ABSTRACT

The diverse mechanisms by which the plasmin(ogen) system is involved in human physiology and pathology are constantly being delineated. For many years, the plasmin(ogen) system was chiefly known as the system responsible for vascular fibrinolysis. Although this is an important function of the plasmin(ogen) system, we now recognize that plasmin(ogen) is critically important as a mediator of inflammation and the innate immune system, which impacts upon a diverse set of mechanisms underlying the pathologies of many diseases. The current review focuses on recent developments in plasmin(ogen) system activation and regulation and how dysregulation of this finely tuned system may contribute to inflammatory disease (atherosclerosis), impaired wound healing, and infection.


Subject(s)
Fibrinolysis , Plasminogen , Complement System Proteins , Humans , Inflammation , Wound Healing
20.
Biochem Biophys Res Commun ; 474(4): 680-685, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27150627

ABSTRACT

The procoagulant activity (PA) of stored units of red blood cells (RBC) increases over time, which is related to the expression/exposure of tissue factor (TF). However, there is a discrepancy between the TF measured and changes in PA observed, suggesting that other blood components contribute to this activity. Our goal was to evaluate changes in PA of stored RBCs and to determine possible contributors to it. RBC units from 4 healthy donors were prepared and stored at 4 °C. On selected days, RBC aliquots were reconstituted with autologous plasma and tested in the thromboelastography assay. Corresponding supernatants were tested in a clotting assay. For all donors, the clotting time (CT) of reconstituted RBC units decreased from ∼3000-4000s on day 1 to ∼1000-1600s on day 30, with the most dramatic changes occurring between days 1 and 5. Anti-TF antibody slightly prolonged the CT. The concentration of TF did not change significantly over time and was within the range of 0.3-2.3 pM. Bovine lactadherin (LTD) prolonged the CT of the RBC (by 2.4-3.4-fold in days 3-5 and by 1.3-1.8-fold at day 30). Anti-TF antibody together with LTD had a cumulative effect on the CT prolongation. CT of supernatants responded to both anti-TF and anti-FXIa antibodies. Three contributors to the PA of stored RBC were identified, i.e. FXIa in solution and phosphatidylserine and TF exposed on blood cells and microparticles. Failure of LTD and antibodies to completely eliminate PA suggests that other components of blood could contribute to it.


Subject(s)
Blood Coagulation/physiology , Blood Preservation/methods , Erythrocytes/physiology , Factor XIa/metabolism , Specimen Handling/methods , Thromboplastin/metabolism , Cells, Cultured , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...