Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
J Exp Clin Cancer Res ; 43(1): 66, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424590

ABSTRACT

BACKGROUND: CRISPR/Cas9 system to treat human-related diseases has achieved significant results and, even if its potential application in cancer research is improving, the application of this approach in clinical practice is still a nascent technology. MAIN BODY: CRISPR/Cas9 technology is not yet used as a single therapy to treat tumors but it can be combined with traditional treatment strategies to provide personalized gene therapy for patients. The combination with chemotherapy, radiation and immunotherapy has been proven to be a powerful means of screening, identifying, validating and correcting tumor targets. Recently, CRISPR/Cas9 technology and CAR T-cell therapies have been integrated to open novel opportunities for the production of more efficient CAR T-cells for all patients. GMP-compatible equipment and reagents are already available for several clinical-grade systems at present, creating the basis and framework for the accelerated development of novel treatment methods. CONCLUSION: Here we will provide a comprehensive collection of the actual GMP-grade CRISPR/Cas9-mediated approaches used to support cancer therapy highlighting how this technology is opening new opportunities for treating tumors.


Subject(s)
CRISPR-Cas Systems , Neoplasms , Humans , Gene Editing/methods , Immunotherapy , Immunotherapy, Adoptive , Neoplasms/genetics , Neoplasms/therapy
2.
Front Immunol ; 15: 1356321, 2024.
Article in English | MEDLINE | ID: mdl-38420122

ABSTRACT

Cancer immunotherapy has made impressive advances in improving the outcome of patients affected by malignant diseases. Nonetheless, some limitations still need to be tackled to more efficiently and safely treat patients, in particular for those affected by solid tumors. One of the limitations is related to the immunosuppressive tumor microenvironment (TME), which impairs anti-tumor immunity. Efforts to identify targets able to turn the TME into a milieu more auspicious to current immuno-oncotherapy is a real challenge due to the high redundancy of the mechanisms involved. However, the insulin-like growth factor 1 receptor (IGF1R), an attractive drug target for cancer therapy, is emerging as an important immunomodulator and regulator of key immune cell functions. Here, after briefly summarizing the IGF1R signaling pathway in cancer, we review its role in regulating immune cells function and activity, and discuss IGF1R as a promising target to improve anti-cancer immunotherapy.


Subject(s)
Neoplasms , Tumor Microenvironment , Humans , Immunotherapy , Neoplasms/therapy , Drug Delivery Systems , Molecular Targeted Therapy , Receptor, IGF Type 1
3.
Front Immunol ; 14: 1191908, 2023.
Article in English | MEDLINE | ID: mdl-37435061

ABSTRACT

Introduction: AATF/Che-1 over-expression in different tumors is well known and its effect on tumorigenicity is mainly due to its central role demonstrated in the oncogenic pathways of solid tumors, where it controls proliferation and viability. The effect exerted by tumors overexpressing Che-1 on the immune response has not yet been investigated. Methods: Starting from ChIP-sequencing data we confirmed Che-1 enrichment on Nectin-1 promoter. Several co-cultures experiments between NK-cells and tumor cells transduced by lentiviral vectors carrying Che-1-interfering sequence, analyzed by flow-cytometry have allowed a detailed characterization of NK receptors and tumor ligands expression. Results: Here, we show that Che-1 is able to modulate the expression of Nectin-1 ligand at the transcriptional level, leading to the impairment of killing activity of NK-cells. Nectin-1 down-modulation induces a modification in NK-cell ligands expression able to interact with activating receptors and to stimulate NK-cell function. In addition, NK-cells from Che-1 transgenic mice, confirming a reduced expression of activating receptors, exhibit impaired activation and a preferential immature status. Discussion: The critical equilibrium between NK-cell ligand expression on tumor cells and the interaction with NK cell receptors is affected by Che-1 over-expression and partially restored by Che-1 interference. The evidence of a new role for Che-1 as regulator of anti-tumor immunity supports the necessity to develop approaches able to target this molecule which shows a dual tumorigenic function as cancer promoter and immune response modulator.


Subject(s)
Carrier Proteins , Neoplasms , Animals , Mice , Ligands , Mice, Transgenic , Nectins/genetics , Neoplasms/genetics , RNA Polymerase II
4.
Free Radic Biol Med ; 183: 1-13, 2022 04.
Article in English | MEDLINE | ID: mdl-35283228

ABSTRACT

The cells possess several mechanisms to counteract the over-production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), including enzymes such as superoxide dismutase, catalase and glutathione peroxidase. Moreover, an important sensor involved in the anti-oxidant response is KEAP1-NRF2-ARE signaling complex. Under oxidative stress (OS), the transcription factor NRF2 can dissociate from the KEAP1-complex in the cytosol and translocate into the nucleus to promote the transcriptional activation of anti-oxidant genes, such as heme oxygenase 1 and NADPH quinone oxidoreductase. Within this context, the activation of NRF2 response is further regulated by BACH1, a transcription repressor, that compete with the KEAP1-NRF2-ARE complex. In this work, we focused on the role of BACH1/NRF2 ratio in the regulation of the anti-oxidant response, proposing their antithetical relation as a valuable target for a therapeutic strategy to test drugs able to exert neuroprotective effects, notably in aging and neurodegenerative diseases. Among these, Down syndrome (DS) is a complex genetic disorder characterized by BACH1 gene triplication that likely results in the impairment of NRF2 causing increased OS. Our results revealed that BACH1 overexpression alters the BACH1/NRF2 ratio in the nucleus and disturbs the induction of antioxidant response genes ultimately resulting in the accumulation of oxidative damage both in Ts2Cje mice (a mouse model of DS) and human DS lymphoblastoid cell lines (LCLs). Based on this evidence, we tested Caffeic Acid Phenethyl Ester (CAPE) and the synthetic analogue VP961, which have been proven to modulate NRF2 activity. We showed that CAPE and VP961 administration to DS LCLs was able to promote NRF2 nuclear translocation, which resulted in the amelioration of antioxidant response. Overall, our study supports the hypothesis that BACH1 triplication in DS subjects is implicated in the alteration of redox homeostasis and therapeutic strategies to overcome this effect are under investigation in our laboratory.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Down Syndrome , NF-E2-Related Factor 2 , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Caffeic Acids , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Mice , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Phenylethyl Alcohol/analogs & derivatives
5.
Cancers (Basel) ; 13(17)2021 Aug 29.
Article in English | MEDLINE | ID: mdl-34503178

ABSTRACT

High-risk neuroblastoma (NB) is a rare childhood cancer whose aggressiveness is due to a variety of chromosomal genetic aberrations, including those conferring immune evasion. Indeed, NB cells adopt several molecular strategies to evade recognition by the immune system, including the downregulation of ligands for NK-cell-activating receptors. To date, while molecular strategies aimed at enhancing the expression of ligands for NKG2D- and DNAM-1-activating receptors have been explored, no evidence has been reported on the immunomodulatory mechanisms acting on the expression of death receptors such as Fas in NB cells. Here, we demonstrated that transient overexpression of the NF-kB p65 subunit upregulates the surface expression of Fas and PVR, the ligand of DNAM-1, thus making NB cell lines significantly more susceptible to NK-cell-mediated apoptosis, recognition, and killing. In contrast, IFNγ and TNFα treatment, although it induced the upregulation of FAS in NB cells and consequently enhanced NK-cell-mediated apoptosis, triggered immune evasion processes, including the strong upregulation of MHC class I and IDO1, both of which are involved in mechanisms leading to the impairment of a proper NK-cell-mediated killing of NB. In addition, high-resolution array CGH analysis performed in our cohort of NB patients revealed that the loss of FAS and/or PVR genes correlated with low survival independently of the disease stage. Our data identify the status of the FAS and PVR genes as prognostic biomarkers of NB that may predict the efficacy of NK-cell-based immunotherapy of NB. Overall, restoration of surface expression of Fas and PVR, through transient upregulation of NF-kB, may be a clue to a novel NK-cell-based immunotherapy of NB.

6.
Cancers (Basel) ; 13(16)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34439194

ABSTRACT

Pathologic activation of PI3Ks and the subsequent deregulation of its downstream signaling pathway is among the most frequent events associated with cellular transformation, cancer, and metastasis. PI3Ks are also emerging as critical factors in regulating anti-tumor immunity by either promoting an immunosuppressive tumor microenvironment or by controlling the activity and the tumor infiltration of cells involved in the immune response. For these reasons, significant pharmaceutical efforts are dedicated to inhibiting the PI3K pathway, with the main goal to target the tumor and, at the same time, to enhance the anti-tumor immunity. Recent immunotherapeutic approaches involving the use of adoptive cell transfer of autologous genetically modified T cells or immune check-point inhibitors showed high efficacy. However, mechanisms of resistance to these kinds of therapy are emerging, due in part to the inhibition of effector T cell functions exerted by the immunosuppressive tumor microenvironment. Here, we first describe how inhibition of PI3K/Akt pathway contribute to enhance anti-tumor immunity and further discuss how inhibitors of the pathway are used in combination with different immunomodulatory and immunotherapeutic agents to improve anti-tumor efficacy.

7.
J Immunother Cancer ; 9(3)2021 03.
Article in English | MEDLINE | ID: mdl-33737337

ABSTRACT

Immune escape mechanisms employed by neuroblastoma (NB) cells include secretion of immunosuppressive factors disrupting effective antitumor immunity. The use of cellular therapy to treat solid tumors needs to be implemented. Killing activity of anti-GD2 Chimeric Antigen Receptor (CAR) T or natural killer (NK) cells against target NB cells was assessed through coculture experiments and quantified by FACS analysis. ELISA assay was used to quantify interferon-γ (IFNγ) secreted by NK and CAR T cells. Real Time PCR and Western Blot were performed to analyze gene and protein levels modifications. Transcriptional study was performed by chromatin immunoprecipitation and luciferase reporter assays on experiments of mutagenesis on the promoter sequence. NB tissue sample were analyzed by IHC and Real Time PCR to perform correlation study. We demonstrate that Indoleamine-pyrrole 2,3-dioxygenase1 (IDO1), due to its ability to convert tryptophan into kynurenines, is involved in NB resistance to activity of immune cells. In NB, IDO1 is able to inhibit the anti-tumor effect displayed by of both anti-GD2 CAR (GD2.CAR) T-cell and NK cells, mainly by impairing their IFNγ production. Furthermore, inhibition of MYCN expression in NB results into accumulation of IDO1 and consequently of kynurenines, which negatively affect the immune surveillance. Inverse correlation between IDO1 and MYCN expression has been observed in a wide cohort of NB samples. This finding was supported by the identification of a transcriptional repressive role of MYCN on IDO1 promoter. The evidence of IDO1 involvement in NB immune escape and its ability to impair NK and GD2.CAR T-cell activity contribute to clarify one of the possible mechanisms responsible for the limited efficacy of these immunotherapeutic approaches. A combined therapy of NK or GD2.CAR T-cells with IDO1 inhibitors, a class of compounds already in phase I/II clinical studies, could represent a new and still unexplored strategy capable to improve long-term efficacy of these immunotherapeutic approaches.


Subject(s)
Gangliosides/metabolism , Immunotherapy, Adoptive , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Interferon-gamma/metabolism , Killer Cells, Natural/transplantation , Lymphocyte Activation , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/transplantation , Cell Line, Tumor , Coculture Techniques , Gangliosides/immunology , Gene Expression Regulation, Neoplastic , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/enzymology , Neuroblastoma/genetics , Neuroblastoma/immunology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Escape , Tumor Microenvironment
8.
Prog Neurobiol ; 196: 101892, 2021 01.
Article in English | MEDLINE | ID: mdl-32795489

ABSTRACT

A major challenge in neurobiology is the identification of the mechanisms by which protein misfolding leads to cellular toxicity. Many neurodegenerative disorders, in which aberrant protein conformers aggregate into pathological inclusions, present the chronic activation of the PERK branch of the unfolded protein response. The adaptive effects of the PERK pathway include reduction of translation by transient inhibition of eIF2α and antioxidant protein production via induction of Nrf2 transcription factor. In contrast, PERK prolonged activation leads to sustained reduction in protein synthesis and induction of cell death pathways. To further investigate the role of the PERK pathway in neurodegenerative disorders, we focused on Down syndrome (DS), in which aging confers a high risk of Alzheimer disease (AD). By investigating human DS frontal cortices, we found early and sustained PERK activation associated with the induction of eIF2α and ATF4 downstream signals. We also observed that the Nrf2 response is uncoupled from PERK and its antioxidant effects are repressed in a mechanism implicating the transcription repressor Bach1. The pharmacological inhibition of PERK in DS mice reduced eIF2α-related translational repression and promoted Nrf2 nuclear translocation, favoring the rescue of Nrf2/Bach1 imbalance. The further analysis of peripheral cells from living DS individuals provided strong support of the pathological link between PERK and trisomy 21. Our results suggest that failure to regulate the PERK pathway is a peculiar characteristic of DS pathology and it may represent an essential step to promote cellular dysfunction, which actively contributes in the brain to the early development of AD.


Subject(s)
Alzheimer Disease/metabolism , Down Syndrome/metabolism , Protein Kinase Inhibitors/pharmacology , Unfolded Protein Response/physiology , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Autopsy , Basic-Leucine Zipper Transcription Factors/metabolism , Child , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Transgenic , Middle Aged , NF-E2-Related Factor 2/metabolism , Young Adult
9.
Int J Cancer ; 148(10): 2522-2534, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33320972

ABSTRACT

Pediatric low-grade gliomas (pLGGs) are the most frequent brain tumor in children. Adjuvant treatment, consisting in chemotherapy and radiotherapy, is often necessary if a complete surgical resection cannot be obtained. Traditional treatment approaches result in a significant long-term morbidity, with a detrimental impact on quality of life. Dysregulation of the mitogen-activated protein kinase (MAPK) pathway is the molecular hallmark of pLGGs and hyperactivation of the downstream mammalian target of rapamycin (mTOR) pathway is frequently observed. We report clinical and radiological results of front-line treatment with everolimus in 10 consecutive patients diagnosed with m-TOR positive pLGGs at the Bambino Gesù Children's Hospital in Rome, Italy. Median duration of treatment was 19 months (range from 13-60). Brain magnetic resonance imaging showed stable disease in 7 patients, partial response in 1 and disease progression in 2. Therapy-related adverse events were always reversible after dose reduction or temporary treatment interruption. To the best of our knowledge, this is the first report of everolimus treatment for chemo- and radiotherapy-naïve children with pLGG. Our results provide preliminary support, despite low sample size, for the use of everolimus as target therapy in pLGG showing lack of progression with a manageable toxicity profile.

10.
Antioxidants (Basel) ; 9(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187268

ABSTRACT

Down syndrome (DS) is the most common chromosomal disorder and the leading genetic cause of intellectual disability in humans, which results from the triplication of chromosome 21. To search for biomarkers for the early detection and exploration of the disease mechanisms, here, we investigated the protein expression signature of peripheral blood mononuclear cells (PBMCs) in DS children compared with healthy donors (HD) by using an in-depth label-free shotgun proteomics approach. Identified proteins are found associated with metabolic pathways, cellular trafficking, DNA structure, stress response, cytoskeleton network, and signaling pathways. The results showed that a well-defined number of dysregulated pathways retain a prominent role in mediating DS pathological features. Further, proteomics results are consistent with published study in DS and provide evidences that increased oxidative stress and the increased induction of stress related response, is a participant in DS pathology. In addition, the expression levels of some key proteins have been validated by Western blot analysis while protein carbonylation, as marker of protein oxidation, was investigated. The results of this study propose that PBMCs from DS children might be in an activated state where endoplasmic reticulum stress and increased production of radical species are one of the primary events contributing to multiple DS pathological features.

11.
J Exp Clin Cancer Res ; 37(1): 239, 2018 Sep 27.
Article in English | MEDLINE | ID: mdl-30261904

ABSTRACT

BACKGROUND: The mechanism by which c-Myc exerts its oncogenic functions is not completely clear and different hypotheses are still under investigation. The knowledge of the capacity of c-Myc to bind exclusively E-box sequences determined the discrepancy between, on the one hand, genomic studies showing the binding of c-Myc to all active promoters and, on the other hand, the evidence that only 60% or less of the binding sites have E-box sequences. MAIN BODY: In this review, we provide support to the hypothesis that the cooperation of c-Myc with transcriptional cofactors mediates c-Myc-induced cellular functions. We produce evidence that recently identified cofactors are involved in c-Myc control of survival mechanisms of cancer cells. CONCLUSION: The identification of new c-Myc cofactors could favor the development of therapeutic strategies able to compensate the difficulty of targeting c-Myc.


Subject(s)
Carcinogenesis/genetics , Neoplasms/genetics , Proto-Oncogene Proteins c-myc/genetics , Transcription Factors/genetics , E-Box Elements/genetics , Humans , Promoter Regions, Genetic , Protein Binding , Transcriptional Activation
12.
Cell Cycle ; 17(11): 1286-1290, 2018.
Article in English | MEDLINE | ID: mdl-29943642

ABSTRACT

B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most common malignancy in childhood. Despite the high cure-rate, identifying new druggable molecular targets is still of great interest. In a cohort of BCP-ALL pediatric patients, irrespectively of the molecule/karyotype lesions found, we recently observed high expression of c-Myc and Che-1/AATF, which disappears at time of remission. Study of the molecular mechanisms involved in this co-expression revealed that Che-1 expression was crucial for induction of blast-cell proliferation driven by c-Myc. Furthermore, Che-1/AATF silencing in primary BCP-ALL cell lines improves responsiveness to chemotherapy. These data individuate Che-1 as a possible novel target in the treatment of BCP-ALL able to affect c-Myc-driven tumorigenicity.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Proto-Oncogene Proteins c-myc/metabolism , Repressor Proteins/genetics , Transcription, Genetic , Apoptosis Regulatory Proteins/metabolism , Feedback, Physiological , Humans , Models, Biological , Promoter Regions, Genetic/genetics , Repressor Proteins/metabolism
13.
EMBO Rep ; 19(3)2018 03.
Article in English | MEDLINE | ID: mdl-29367285

ABSTRACT

Despite progress in treating B-cell precursor acute lymphoblastic leukemia (BCP-ALL), disease recurrence remains the main cause of treatment failure. New strategies to improve therapeutic outcomes are needed, particularly in high-risk relapsed patients. Che-1/AATF (Che-1) is an RNA polymerase II-binding protein involved in proliferation and tumor survival, but its role in hematological malignancies has not been clarified. Here, we show that Che-1 is overexpressed in pediatric BCP-ALL during disease onset and at relapse, and that its depletion inhibits the proliferation of BCP-ALL cells. Furthermore, we report that c-Myc regulates Che-1 expression by direct binding to its promoter and describe a strict correlation between Che-1 expression and c-Myc expression. RNA-seq analyses upon Che-1 or c-Myc depletion reveal a strong overlap of the respective controlled pathways. Genomewide ChIP-seq experiments suggest that Che-1 acts as a downstream effector of c-Myc. These results identify the pivotal role of Che-1 in the control of BCP-ALL proliferation and present the protein as a possible therapeutic target in children with relapsed BCP-ALL.


Subject(s)
Apoptosis Regulatory Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-myc/genetics , Repressor Proteins/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Leukemic , High-Throughput Nucleotide Sequencing , Humans , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Promoter Regions, Genetic/genetics
14.
Oncotarget ; 7(33): 52900-52911, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27174915

ABSTRACT

Medulloblastoma (MB) is the most common malignant brain tumor in children. Despite therapeutic advancements, high-risk groups still present significant mortality. A deeper knowledge of the signaling pathways contributing to MB formation and aggressiveness would help develop new successful therapies. The target of rapamycin, mTOR signaling, is known to be involved in MB and is already targetable in the clinical setting. Furthermore, mTOR is a master metabolic regulator able to control cell growth versus autophagy decisions in conditions of amino-acid deprivation that can be due to IDO1 enzymatic activity. IDO1 has been also implicated in the regulation of inflammation, as well as of T cell-mediated immune responses, in a variety of pathological conditions, including brain tumors. In particular, IDO1 induces expansion of regulatory T-cells (Treg), preventing immune response against tumor cells. Analysis of 27 MB tissue specimens for the expression of both mTOR and IDO1 showed their widespread expression in all samples. Testing their cooperation in vitro, a significant involvement of IDO1 in mTOR immunogenic pathway was found, able to counteract the aim of rapamycin treatment. In MB cell lines, inhibition of mTOR strongly induced IDO1 expression and activity, corroborating its ability to recruit Treg cells in the tumor microenvironment. The mTOR/IDO1 cross talk was found to be strictly specific of MB cells. We demonstrated that mTOR pathway cross talks with IDO1 pathway to promote MB immune escape, possibly contributing to failure of mTOR- targeted therapy.


Subject(s)
Cerebellar Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Medulloblastoma/genetics , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Antibiotics, Antineoplastic/therapeutic use , Cell Line, Tumor , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/metabolism , Child , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Infant , Medulloblastoma/drug therapy , Medulloblastoma/metabolism , Molecular Targeted Therapy , Signal Transduction/drug effects , Sirolimus/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , TOR Serine-Threonine Kinases/metabolism , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
15.
Pediatr Blood Cancer ; 63(4): 719-22, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26626406

ABSTRACT

Medulloblastoma is the most common pediatric brain tumor. We describe a child with tuberous sclerosis complex that developed a Group 3, myc overexpressed, metastatic medulloblastoma (MB). Considering the high risk of treatment-induced malignancies, a tailored therapy, omitting radiation, was given. Based on the evidence of mammalian target of rapamycin mTORC, mTOR Complex; RAS, Rat sarcoma; RAF, rapidly accelerated fibrosarcoma (mTOR) pathway activation in the tumor, targeted therapy was applied resulting in complete remission of disease. Although the PI3K/AKT/mTOR signaling pathway plays a role in MB, we did not find TSC1/TSC2 (TSC, tuberous sclerosis complex) mutation in our patient. We speculate that a different pathway resulting in mTOR activation is the basis of both TSC and MB in this child; H&E, haematoxilin and eosin; Gd, gadolinium.


Subject(s)
Cerebellar Neoplasms/pathology , Medulloblastoma/pathology , Tuberous Sclerosis/complications , Blotting, Western , Cerebellar Neoplasms/complications , Cerebellar Neoplasms/genetics , DNA Mutational Analysis , Female , Humans , Medulloblastoma/complications , Medulloblastoma/genetics , TOR Serine-Threonine Kinases/biosynthesis , Tuberous Sclerosis/genetics
16.
J Hematol Oncol ; 8: 36, 2015 Apr 16.
Article in English | MEDLINE | ID: mdl-25886742

ABSTRACT

NK cells expressing TIM-3 show a marked increase in IFNγ production in response to acute myeloid leukemia (AML) blast cells that endogenously express Gal-9. Herein, we demonstrate that NK cell-mediated production of IFNγ, induced by TIM-3/Gal-9 interaction and released in bone marrow microenvironment, is responsible for IDO1 expression in AML blasts. IDO1-expressing AML blasts consequently down-regulate NK cell degranulation activity, by sustaining leukemia immune escape. Furthermore, the blocking of TIM-3/Gal-9 interaction strongly down-regulates IFNγ-dependent IDO1 activity. Thus, the inhibition of TIM-3/Gal-9 immune check point, which affects NK cell-dependent IFNγ production and the consequent IDO1 activation, could usefully integrate current chemotherapeutic approaches.


Subject(s)
Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Signal Transduction/immunology , Tumor Escape/immunology , Blotting, Western , Cells, Cultured , Chromatography, High Pressure Liquid , Enzyme-Linked Immunosorbent Assay , Galectins/metabolism , Hepatitis A Virus Cellular Receptor 2 , Humans , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/pathology , Leukemia, Myeloid, Acute/metabolism , Membrane Proteins/metabolism
17.
Oncotarget ; 5(8): 2052-64, 2014 Apr 30.
Article in English | MEDLINE | ID: mdl-24903009

ABSTRACT

Microenvironmental factors contribute to the immune dysfunction characterizing acute myeloid leukemia (AML). Indoleamine 2,3-dioxygenase 1 (IDO1) is an interferon (IFN)-γ-inducible enzyme that degrades tryptophan into kynurenine, which, in turn, inhibits effector T cells and promotes regulatory T-cell (Treg) differentiation. It is presently unknown whether childhood AML cells express IDO1 and whether IDO1 activity correlates with patient outcome. We investigated IDO1 expression and function in 37 children with newly diagnosed AML other than acute promyelocytic leukemia. Blast cells were cultured with exogenous IFN-γ for 24 hours, followed by the measurement of kynurenine production and tryptophan consumption. No constitutive expression of IDO1 protein was detected in blast cells from the 37 AML samples herein tested. Conversely, 19 out of 37 (51%) AML samples up-regulated functional IDO1 protein in response to IFN-γ. The inability to express IDO1 by the remaining 18 AML samples was not apparently due to a defective IFN-γ signaling circuitry, as suggested by the measurement of signal transducer and activator of transcription 3 (STAT3) phosphorylation. Co-immunoprecipitation assays indicated the occurrence of physical interactions between STAT3 and IDO1 in AML blasts. In line with this finding, STAT3 inhibitors abrogated IDO1 function in AML blasts. Interestingly, levels of IFN-γ were significantly higher in the bone marrow fluid of IDO-expressing compared with IDO-nonexpressing AMLs. In mixed tumor lymphocyte cultures (MTLC), IDO-expressing AML blasts blunted the ability of allogeneic naïve T cells to produce IFN-γ and promoted Treg differentiation. From a clinical perspective, the 8-year event-free survival was significantly worse in IDO-expressing children (16.4%, SE 9.8) as compared with IDO-nonexpressing ones (48.0%, SE 12.1; p=0.035). These data indicate that IDO1 expression by leukemia blasts negatively affects the prognosis of childhood AML. Moreover, they speak in favor of the hypothesis that IDO can be targeted, in adjunct to current chemotherapy approaches, to improve the clinical outcome of children with AML.


Subject(s)
Biomarkers, Tumor/analysis , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Leukemia, Myeloid, Acute/enzymology , Adolescent , Blotting, Western , Child , Child, Preschool , Disease-Free Survival , Enzyme-Linked Immunosorbent Assay , Female , Fluorescent Antibody Technique , Humans , Immunoprecipitation , Infant , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Male , Real-Time Polymerase Chain Reaction , Young Adult
18.
J Transl Med ; 10: 247, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23232072

ABSTRACT

BACKGROUND: Multiple myeloma (MM) is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1) degrades tryptophan into kynurenine (KYN), which inhibits effector T cells and promote regulatory T-cell (Treg) differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment. METHODS: We investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3) or smoldering MM (SMM; n=4). IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF) and with the frequency of Treg cells and NY-ESO-1-specific CD8(+) T cells. RESULTS: KYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4(+)CD25(+)FoxP3(+) Treg cells and the contraction of NY-ESO-1-specific CD8(+) T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4(+) T cells into bona fide CD4(+)CD25(hi)FoxP3(hi) Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by D,L-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO(+) myeloma disease compared with patients having IDO(-) MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity. CONCLUSIONS: These data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.


Subject(s)
Immune System/abnormalities , Immune System/enzymology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Multiple Myeloma/enzymology , Multiple Myeloma/immunology , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Cell Differentiation/immunology , Cell Line, Tumor , Cell Proliferation , Hepatocyte Growth Factor/metabolism , Humans , Interleukin-10/metabolism , Membrane Proteins/metabolism , Plasma Cells/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Transforming Growth Factor beta/metabolism , Tumor Burden/immunology
19.
Cancer Biol Ther ; 13(4): 198-205, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22236966

ABSTRACT

Vimentin, a mesenchymal marker, is frequently overexpressed in epithelial carcinomas undergoing epithelial to mesenchymal transition (EMT), a condition correlated with invasiveness and poor prognosis. Therefore, vimentin is a potential molecular target for anticancer therapy. Emerging studies in experimental models underscore the functions of homeodomain-interacting protein kinase 2 (HIPK2) as potential oncosuppressor by acting as transcriptional corepressor or catalytic activator of molecules involved in apoptosis and response to antitumor drugs. However, an involvement of HIPK2 in limiting tumor invasion remains to be elucidated. This study, by starting with a microarray analysis, demonstrates that HIPK2 downregulates vimentin expression in invasive, vimentin-positive, MDA-MB-231 breast cancer cells and in the non-invasive MCF7 breast cancer cells subjected to chemical hypoxia, a drive for mesenchymal shift and tumor invasion. At functional level, vimentin downregulation by HIPK2 correlates with inhibition of breast tumor cell invasion. Together, these data show that vimentin is a novel target for HIPK2 repressor function and that HIPK2-mediated vimentin downregulation can contribute to inhibition of breast cancer cells invasion that might be applied in clinical therapy.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carrier Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Vimentin/metabolism , Apoptosis/physiology , Breast Neoplasms/genetics , Carrier Proteins/genetics , Cell Line, Tumor , Cell Movement/physiology , Down-Regulation , Female , Humans , Neoplasm Invasiveness , Protein Serine-Threonine Kinases/genetics , Transfection , Vimentin/genetics
20.
Cancer Res ; 70(23): 9711-20, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20952509

ABSTRACT

The CCAAT-binding transcription factor NF-Y plays a central role in regulating cellular proliferation by controlling the expression of genes required for cell-cycle progression such as cyclin A, cyclin B1, cyclin B2, cdc25A, cdc25C, and cdk1. Here we show that unrestricted NF-Y activity leads to apoptosis in an E2F1- and wild-type p53 (wtp53)-dependent manner. Unrestricted NF-Y activity induced an increase in E2F1 mRNA and protein levels. Furthermore, NF-Y directly bound the E2F1 promoter and this correlated with the appearance of open chromatin marks. The ability of NF-Y to induce apoptosis was impaired in cells lacking E2F1 and wtp53. Moreover, NF-Y overexpression elicited phosphorylation of wt p53Ser18 in an E2F1-dependent manner. Our findings establish that NF-Y acts upstream of E2F1 in p53-mediated apoptosis.


Subject(s)
Apoptosis/physiology , CCAAT-Binding Factor/physiology , E2F1 Transcription Factor/metabolism , Tumor Suppressor Protein p53/metabolism , Animals , Blotting, Western , CCAAT-Binding Factor/genetics , CCAAT-Binding Factor/metabolism , Cell Line , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , E2F1 Transcription Factor/genetics , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , HCT116 Cells , HeLa Cells , Humans , Mice , Mice, Knockout , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...