Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
1.
NAR Genom Bioinform ; 6(2): lqae031, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38666213

ABSTRACT

DNA variation analysis has become indispensable in many aspects of modern biomedicine, most prominently in the comparison of normal and tumor samples. Thousands of samples are collected in local sequencing efforts and public databases requiring highly scalable, portable, and automated workflows for streamlined processing. Here, we present nf-core/sarek 3, a well-established, comprehensive variant calling and annotation pipeline for germline and somatic samples. It is suitable for any genome with a known reference. We present a full rewrite of the original pipeline showing a significant reduction of storage requirements by using the CRAM format and runtime by increasing intra-sample parallelization. Both are leading to a 70% cost reduction in commercial clouds enabling users to do large-scale and cross-platform data analysis while keeping costs and CO2 emissions low. The code is available at https://nf-co.re/sarek.

3.
Nat Immunol ; 24(9): 1540-1551, 2023 09.
Article in English | MEDLINE | ID: mdl-37563310

ABSTRACT

Circulating proteins have important functions in inflammation and a broad range of diseases. To identify genetic influences on inflammation-related proteins, we conducted a genome-wide protein quantitative trait locus (pQTL) study of 91 plasma proteins measured using the Olink Target platform in 14,824 participants. We identified 180 pQTLs (59 cis, 121 trans). Integration of pQTL data with eQTL and disease genome-wide association studies provided insight into pathogenesis, implicating lymphotoxin-α in multiple sclerosis. Using Mendelian randomization (MR) to assess causality in disease etiology, we identified both shared and distinct effects of specific proteins across immune-mediated diseases, including directionally discordant effects of CD40 on risk of rheumatoid arthritis versus multiple sclerosis and inflammatory bowel disease. MR implicated CXCL5 in the etiology of ulcerative colitis (UC) and we show elevated gut CXCL5 transcript expression in patients with UC. These results identify targets of existing drugs and provide a powerful resource to facilitate future drug target prioritization.


Subject(s)
Colitis, Ulcerative , Inflammatory Bowel Diseases , Multiple Sclerosis , Humans , Genome-Wide Association Study , Inflammatory Bowel Diseases/genetics , Quantitative Trait Loci , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/genetics , Inflammation/genetics , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide
4.
Sci Rep ; 13(1): 10058, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37344505

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disease characterized by systemic inflammation and is mediated by multiple immune cell types. In this work, we aimed to determine the relevance of changes in cell proportions in peripheral blood mononuclear cells (PBMCs) during the development of disease and following treatment. Samples from healthy blood donors, newly diagnosed RA patients, and established RA patients that had an inadequate response to MTX and were about to start tumor necrosis factor inhibitors (TNFi) treatment were collected before and after 3 months of treatment. We used in parallel a computational deconvolution approach based on RNA expression and flow cytometry to determine the relative cell-type frequencies. Cell-type frequencies from deconvolution of gene expression indicate that monocytes (both classical and non-classical) and CD4+ cells (Th1 and Th2) were increased in RA patients compared to controls, while NK cells and B cells (naïve and mature) were significantly decreased in RA patients. Treatment with MTX caused a decrease in B cells (memory and plasma cell), and a decrease in CD4 Th cells (Th1 and Th17), while treatment with TNFi resulted in a significant increase in the population of B cells. Characterization of the RNA expression patterns found that most of the differentially expressed genes in RA subjects after treatment can be explained by changes in cell frequencies (98% and 74% respectively for MTX and TNFi).


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Humans , Antirheumatic Agents/therapeutic use , Leukocytes, Mononuclear/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/diagnosis , CD4-Positive T-Lymphocytes/metabolism , RNA
5.
Front Med (Lausanne) ; 10: 1146353, 2023.
Article in English | MEDLINE | ID: mdl-37051216

ABSTRACT

Background: Methotrexate (MTX) is the first line treatment for rheumatoid arthritis (RA), but failure of satisfying treatment response occurs in a significant proportion of patients. Here we present a longitudinal multi-omics study aimed at detecting molecular and cellular processes in peripheral blood associated with a successful methotrexate treatment of rheumatoid arthritis. Methods: Eighty newly diagnosed patients with RA underwent clinical assessment and donated blood before initiation of MTX, and 3 months into treatment. Flow cytometry was used to describe cell types and presence of activation markers in peripheral blood, the expression of 51 proteins was measured in serum or plasma, and RNA sequencing was performed in peripheral blood mononuclear cells (PBMC). Response to treatment after 3 months was determined using the EULAR response criteria. We assessed the changes in biological phenotypes during treatment, and whether these changes differed between responders and non-responders with regression analysis. By using measurements from baseline, we also tried to find biomarkers of future MTX response or, alternatively, to predict MTX response. Results: Among the MTX responders, (Good or Moderate according to EULAR treatment response classification, n = 60, 75%), we observed changes in 29 partly overlapping cell types proportions, levels of 13 proteins and expression of 38 genes during treatment. These changes were in most cases suppressions that were stronger among responders compared to non-responders. Within responders to treatment, we observed a suppression of FOXP3 gene expression, reduction of immunoglobulin gene expression and suppression of genes involved in cell proliferation. The proportion of many HLA-DR expressing T-cell populations were suppressed in all patients irrespective of clinical response, and the proportion of many IL21R+ T-cells were reduced exclusively in non-responders. Using only the baseline measurements we could not detect any biomarkers or prediction models that could predict response to MTX. Conclusion: We conclude that a deep molecular and cellular phenotyping of peripheral blood cells in RA patients treated with methotrexate can reveal previously not recognized differences between responders and non-responders during 3 months of treatment with MTX. This may contribute to the understanding of MTX mode of action and explain non-responsiveness to MTX therapy.

6.
Clin J Am Soc Nephrol ; 18(1): 17-27, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36719157

ABSTRACT

BACKGROUND: Fibroblast growth factor-23 (FGF-23) is associated with a range of cardiovascular and noncardiovascular diseases in conventional epidemiological studies, but substantial residual confounding may exist. Mendelian randomization approaches can help control for such confounding. METHODS: SCALLOP Consortium data of 19,195 participants were used to generate an FGF-23 genetic score. Data from 337,448 UK Biobank participants were used to estimate associations between higher genetically predicted FGF-23 concentration and the odds of any atherosclerotic cardiovascular disease (n=26,266 events), nonatherosclerotic cardiovascular disease (n=12,652), and noncardiovascular diseases previously linked to FGF-23. Measurements of carotid intima-media thickness and left ventricular mass were available in a subset. Associations with cardiovascular outcomes were also tested in three large case-control consortia: CARDIOGRAMplusC4D (coronary artery disease, n=181,249 cases), MEGASTROKE (stroke, n=34,217), and HERMES (heart failure, n=47,309). RESULTS: We identified 34 independent variants for circulating FGF-23, which formed a validated genetic score. There were no associations between genetically predicted FGF-23 and any of the cardiovascular or noncardiovascular outcomes. In UK Biobank, the odds ratio (OR) for any atherosclerotic cardiovascular disease per 1-SD higher genetically predicted logFGF-23 was 1.03 (95% confidence interval [95% CI], 0.98 to 1.08), and for any nonatherosclerotic cardiovascular disease, it was 1.01 (95% CI, 0.94 to 1.09). The ORs in the case-control consortia were 1.00 (95% CI, 0.97 to 1.03) for coronary artery disease, 1.01 (95% CI, 0.95 to 1.07) for stroke, and 1.00 (95% CI, 0.95 to 1.05) for heart failure. In those with imaging, logFGF-23 was not associated with carotid or cardiac abnormalities. CONCLUSIONS: Genetically predicted FGF-23 levels are not associated with atherosclerotic and nonatherosclerotic cardiovascular diseases, suggesting no important causal link. PODCAST: This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_01_10_CJN05080422.mp3.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Artery Disease , Heart Failure , Stroke , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Carotid Intima-Media Thickness , Fibroblast Growth Factor-23 , Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Risk Factors
7.
Eur J Hum Genet ; 31(4): 424-429, 2023 04.
Article in English | MEDLINE | ID: mdl-36195707

ABSTRACT

The number of people accessing their own polygenic risk scores (PRSs) online is rapidly increasing, yet little is known about why people are doing this, how they react to the information, and what they do with it. We conducted a qualitative interview-based study with people who pursued PRSs through Impute.me, to explore their motivations for seeking PRS information, their emotional reactions, and actions taken in response to their results. Using interpretive description, we developed a theoretical model describing the experience of receiving PRSs in a direct-to-consumer (DTC) context. Dissatisfaction with healthcare was an important motivator for seeking PRS information. Participants described having medical concerns dismissed and experiencing medical distrust, which drove them to self-advocate for their health, which ultimately led them to seek PRSs. Polygenic risk scores were often empowering for participants but could be distressing when PRS information did not align with participants' perceptions of their personal or family histories. Behavioural changes made in response to PRS results included dietary modifications, changes in vitamin supplementation and talk-based therapy. Our data provides the first qualitative insight into how people's lived experience influence their interactions with DTC PRSs.


Subject(s)
Genetic Predisposition to Disease , Multifactorial Inheritance , Humans , Risk Factors , Genome-Wide Association Study
8.
Ann Rheum Dis ; 81(8): 1151-1161, 2022 08.
Article in English | MEDLINE | ID: mdl-35470161

ABSTRACT

OBJECTIVE: Neonatal lupus erythematosus (NLE) may develop after transplacental transfer of maternal autoantibodies with cardiac manifestations (congenital heart block, CHB) including atrioventricular block, atrial and ventricular arrhythmias, and cardiomyopathies. The association with anti-Ro/SSA antibodies is well established, but a recurrence rate of only 12%-16% despite persisting maternal autoantibodies suggests that additional factors are required for CHB development. Here, we identify fetal genetic variants conferring risk of CHB and elucidate their effects on cardiac function. METHODS: A genome-wide association study was performed in families with at least one case of CHB. Gene expression was analysed by microarrays, RNA sequencing and PCR and protein expression by western blot, immunohistochemistry, immunofluorescence and flow cytometry. Calcium regulation and connectivity were analysed in primary cardiomyocytes and cells induced from pleuripotent stem cells. Fetal heart performance was analysed by Doppler/echocardiography. RESULTS: We identified DNAJC6 as a novel fetal susceptibility gene, with decreased cardiac expression of DNAJC6 associated with the disease risk genotype. We further demonstrate that fetal cardiomyocytes deficient in auxilin, the protein encoded by DNAJC6, have abnormal connectivity and Ca2+ homoeostasis in culture, as well as decreased cell surface expression of the Cav1.3 calcium channel. Doppler echocardiography of auxilin-deficient fetal mice revealed cardiac NLE abnormalities in utero, including abnormal heart rhythm with atrial and ventricular ectopias, as well as a prolonged atrioventricular time intervals. CONCLUSIONS: Our study identifies auxilin as the first genetic susceptibility factor in NLE modulating cardiac function, opening new avenues for the development of screening and therapeutic strategies in CHB.


Subject(s)
Atrioventricular Block , Auxilins , Animals , Antibodies, Antinuclear , Atrioventricular Block/genetics , Autoantibodies , Fetal Heart , Genome-Wide Association Study , Heart Block/congenital , Lupus Erythematosus, Systemic/congenital , Mice
9.
Atherosclerosis ; 348: 8-15, 2022 05.
Article in English | MEDLINE | ID: mdl-35381443

ABSTRACT

BACKGROUND AND AIMS: Genome-wide association studies (GWAS) identified a coronary artery disease (CAD) risk locus on 13.q34 tagged by rs61969072 (T/G). This variant lies in an intergenic region, proximal to ING1, CARKD and CARS2 but its causal relationship to CAD is unknown. METHODS AND RESULTS: We first demonstrated that rs61969072 and tightly linked single nucleotide polymorphisms (SNPs) associate with CARS2 but not ING1 or CARKD expression in carotid endarterectomy samples, with reduced CARS2 abundance in carriers of the CAD risk allele (G). THP-1 monocytes were differentiated and polarized to proinflammatory (M1) and anti-inflammatory (M2) macrophages. CARS2 gene expression decreased in M1 and increased in M2 macrophages, consistent with a role for CARS2 in inflammation. Gene expression profiling revealed an increase in pro-inflammatory markers in response to CARS2 siRNA knockdown in THP-1 derived macrophages, accompanied by an increased abundance of inflammatory cytokines in the cell supernatant. Functional enrichment analysis of impacted transcripts identified the anti-inflammatory IL10 signalling pathway. Western blot analysis of CARS2 silenced macrophages revealed reduced STAT3 phosphorylation in response to IL-10 and increased expression of LPS-induced genes that are repressed by IL-10, indicating a role for CARS2 in anti-inflammatory signalling. Finally, to simulate vessel wall conditions, macrophages, and smooth muscle cells (SMC) were maintained in co-culture. Significantly, CARS2 silencing in macrophages altered the SMC phenotype, decreasing expression of contractile genes and increasing expression of inflammatory genes. CONCLUSIONS: These data highlight a novel anti-inflammatory novel role for CARS2 in human macrophages and SMCs that may underlie the protective effect of a common GWAS-identified variant.


Subject(s)
Coronary Artery Disease , Interleukin-10 , Anti-Inflammatory Agents/pharmacology , Coronary Artery Disease/genetics , Coronary Artery Disease/metabolism , Cytokines/metabolism , Genome-Wide Association Study , Humans , Interleukin-10/genetics , Interleukin-10/metabolism , Macrophages/metabolism
10.
Circulation ; 145(18): 1398-1411, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35387486

ABSTRACT

BACKGROUND: SARS-CoV-2, the causal agent of COVID-19, enters human cells using the ACE2 (angiotensin-converting enzyme 2) protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 is highly expressed in the heart and respiratory and gastrointestinal tracts, playing important regulatory roles in the cardiovascular and other biological systems. However, the genetic basis of the ACE2 protein levels is not well understood. METHODS: We have conducted the largest genome-wide association meta-analysis of plasma ACE2 levels in >28 000 individuals of the SCALLOP Consortium (Systematic and Combined Analysis of Olink Proteins). We summarize the cross-sectional epidemiological correlates of circulating ACE2. Using the summary statistics-based high-definition likelihood method, we estimate relevant genetic correlations with cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 severity using mendelian randomization. We also perform in silico functional analysis by integrating with other types of omics data. RESULTS: We identified 10 loci, including 8 novel, capturing 30% of the heritability of the protein. We detected that plasma ACE2 was genetically correlated with vascular diseases, severe COVID-19, and a wide range of human complex diseases and medications. An X-chromosome cis-protein quantitative trait loci-based mendelian randomization analysis suggested a causal effect of elevated ACE2 levels on COVID-19 severity (odds ratio, 1.63 [95% CI, 1.10-2.42]; P=0.01), hospitalization (odds ratio, 1.52 [95% CI, 1.05-2.21]; P=0.03), and infection (odds ratio, 1.60 [95% CI, 1.08-2.37]; P=0.02). Tissue- and cell type-specific transcriptomic and epigenomic analysis revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood immune cells. CONCLUSIONS: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, providing a useful resource for further biological and clinical studies on this coronavirus receptor.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Receptors, Coronavirus , SARS-CoV-2
12.
Eur J Hum Genet ; 30(3): 339-348, 2022 03.
Article in English | MEDLINE | ID: mdl-34983942

ABSTRACT

There is growing interest in the clinical application of polygenic scores as their predictive utility increases for a range of health-related phenotypes. However, providing polygenic score predictions on the absolute scale is an important step for their safe interpretation. We have developed a method to convert polygenic scores to the absolute scale for binary and normally distributed phenotypes. This method uses summary statistics, requiring only the area-under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic scores are converted using normal distribution theory. We also evaluate methods for estimating polygenic score AUC/R2 from genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk conversion and AUC/R2 estimation using data for eight binary and three continuous phenotypes in the UK Biobank sample. When the AUC/R2 of the polygenic score is known, the observed and estimated absolute values were highly concordant. Estimates of AUC/R2 from the lassosum pseudovalidation method were most similar to the observed AUC/R2 values, though estimated values deviated substantially from the observed for autoimmune disorders. This study enables accurate interpretation of polygenic scores using only summary statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have created interactive webtools implementing the conversion to the absolute ( https://opain.github.io/GenoPred/PRS_to_Abs_tool.html ). Several further barriers must be addressed before clinical implementation of polygenic scores, such as ensuring target individuals are well represented by the GWAS sample.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Genome-Wide Association Study/methods , Humans , Multifactorial Inheritance , Phenotype
13.
Am J Hum Genet ; 109(1): 12-23, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995502

ABSTRACT

The low portability of polygenic scores (PGSs) across global populations is a major concern that must be addressed before PGSs can be used for everyone in the clinic. Indeed, prediction accuracy has been shown to decay as a function of the genetic distance between the training and test cohorts. However, such cohorts differ not only in their genetic distance but also in their geographical distance and their data collection and assaying, conflating multiple factors. In this study, we examine the extent to which PGSs are transferable between ancestries by deriving polygenic scores for 245 curated traits from the UK Biobank data and applying them in nine ancestry groups from the same cohort. By restricting both training and testing to the UK Biobank data, we reduce the risk of environmental and genotyping confounding from using different cohorts. We define the nine ancestry groups at a sub-continental level, based on a simple, robust, and effective method that we introduce here. We then apply two different predictive methods to derive polygenic scores for all 245 phenotypes and show a systematic and dramatic reduction in portability of PGSs trained using Northwestern European individuals and applied to nine ancestry groups. These analyses demonstrate that prediction already drops off within European ancestries and reduces globally in proportion to genetic distance. Altogether, our study provides unique and robust insights into the PGS portability problem.


Subject(s)
Genetic Association Studies/methods , Genetic Predisposition to Disease , Genetics, Population/methods , Multifactorial Inheritance , Algorithms , Alleles , Biological Specimen Banks , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Models, Genetic , Phenotype , Reproducibility of Results , United Kingdom
14.
Eur J Hum Genet ; 30(1): 81-87, 2022 01.
Article in English | MEDLINE | ID: mdl-34276054

ABSTRACT

We sought to explore individuals' motivations for using their direct-to-consumer genetic testing data to generate polygenic risk scores (PRSs) using a not-for-profit third-party tool, and to assess understanding of, and reaction to their results. Using a cross-sectional design, users of Impute.me who had already accessed PRS results were invited to complete an online questionnaire asking about demographics, motivations for seeking PRSs, understanding and interpretation of PRSs, and two validated scales regarding reactions to results-the Impact of Event Scale Revised (IES-R) and the Feelings About genomiC Testing Results (FACToR). Independent samples T-tests and ANOVA were used to explore associations between the variables. 227 individuals participated in the study. The most frequently reported motivation was general curiosity (98.2%). Only 25.6% of participants correctly answered all questions assessing understanding/interpretation of PRSs. Over half of participants (60.8%) experienced a negative reaction (upset, anxious, and/or sad on FACToR scale) after receiving their PRSs and 5.3% scored over the threshold for potential post-traumatic stress disorder on the IES-R. Lower understanding about PRS was associated with experiencing a negative psychological reaction (P values <0.001). Higher quality pre-test information, particularly to improve understanding, and manage expectations for PRS may be useful in limiting negative psychological reactions.


Subject(s)
Genetic Predisposition to Disease/psychology , Health Literacy , Motivation , Multifactorial Inheritance , Adult , Aged , Direct-To-Consumer Screening and Testing/psychology , Disclosure , Female , Genetic Testing/methods , Humans , Male , Middle Aged
15.
Rheumatology (Oxford) ; 61(4): 1680-1689, 2022 04 11.
Article in English | MEDLINE | ID: mdl-34175943

ABSTRACT

OBJECTIVES: Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. METHODS: Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. RESULTS: The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. CONCLUSIONS: Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/metabolism , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Biomarkers , Female , Humans , Leukocytes, Mononuclear/metabolism , Machine Learning , Methotrexate/metabolism , Methotrexate/therapeutic use , Treatment Outcome , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
16.
Nat Commun ; 12(1): 5276, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489429

ABSTRACT

A promise of genomics in precision medicine is to provide individualized genetic risk predictions. Polygenic risk scores (PRS), computed by aggregating effects from many genomic variants, have been developed as a useful tool in complex disease research. However, the application of PRS as a tool for predicting an individual's disease susceptibility in a clinical setting is challenging because PRS typically provide a relative measure of risk evaluated at the level of a group of people but not at individual level. Here, we introduce a machine-learning technique, Mondrian Cross-Conformal Prediction (MCCP), to estimate the confidence bounds of PRS-to-disease-risk prediction. MCCP can report disease status conditional probability value for each individual and give a prediction at a desired error level. Moreover, with a user-defined prediction error rate, MCCP can estimate the proportion of sample (coverage) with a correct prediction.


Subject(s)
Genetic Predisposition to Disease/genetics , Machine Learning , Multifactorial Inheritance/genetics , Age Factors , Biological Specimen Banks , Breast Neoplasms/genetics , Coronary Artery Disease/genetics , Diabetes Mellitus, Type 2/genetics , Female , Humans , Inflammatory Bowel Diseases/genetics , Male , Reproducibility of Results , Schizophrenia/genetics , Sweden , United Kingdom
17.
J Intern Med ; 290(5): 1061-1070, 2021 11.
Article in English | MEDLINE | ID: mdl-34237174

ABSTRACT

BACKGROUND: The mechanisms underlying rupture of a coronary atherosclerotic plaque and development of myocardial ischemia-reperfusion injury in ST-elevation myocardial infarction (STEMI) remain unresolved. Increased arginase 1 activity leads to reduced nitric oxide (NO) production and increased formation of reactive oxygen species due to uncoupling of the NO-producing enzyme endothelial NO synthase (eNOS). This contributes to endothelial dysfunction, plaque instability and increased susceptibility to ischemia-reperfusion injury in acute myocardial infarction. OBJECTIVE: The purpose of this study was to test the hypothesis that arginase gene and protein expression are upregulated in patients with STEMI. METHODS: Two cohorts of patients with STEMI were included. In the first cohort (n = 51), expression of arginase and NO-synthases as well as arginase 1 protein levels were determined and compared to a healthy control group (n = 45). In a second cohort (n = 68), plasma arginase 1 levels and infarct size were determined using cardiac magnetic resonance imaging. RESULTS: Expression of the gene encoding arginase 1 was significantly elevated at admission and 24-48 h after STEMI but not 3 months post STEMI, in comparison with the control group. Expression of the genes encoding arginase 2 and endothelial NO synthase (NOS3) were unaltered. Arginase 1 protein levels were elevated at admission, 24 h post STEMI and remained elevated for up to 6 months. No significant correlation between plasma arginase 1 protein levels and infarct size was observed. CONCLUSION: The markedly increased gene and protein expression of arginase 1 already at admission indicates a role of arginase 1 in the development of STEMI.


Subject(s)
Arginase , Myocardial Reperfusion Injury , ST Elevation Myocardial Infarction , Arginase/blood , Arginase/genetics , Humans , Myocardial Reperfusion Injury/genetics , Nitric Oxide Synthase Type III , ST Elevation Myocardial Infarction/genetics , Treatment Outcome
18.
PLoS Genet ; 17(5): e1009021, 2021 05.
Article in English | MEDLINE | ID: mdl-33945532

ABSTRACT

The predictive utility of polygenic scores is increasing, and many polygenic scoring methods are available, but it is unclear which method performs best. This study evaluates the predictive utility of polygenic scoring methods within a reference-standardized framework, which uses a common set of variants and reference-based estimates of linkage disequilibrium and allele frequencies to construct scores. Eight polygenic score methods were tested: p-value thresholding and clumping (pT+clump), SBLUP, lassosum, LDpred1, LDpred2, PRScs, DBSLMM and SBayesR, evaluating their performance to predict outcomes in UK Biobank and the Twins Early Development Study (TEDS). Strategies to identify optimal p-value thresholds and shrinkage parameters were compared, including 10-fold cross validation, pseudovalidation and infinitesimal models (with no validation sample), and multi-polygenic score elastic net models. LDpred2, lassosum and PRScs performed strongly using 10-fold cross-validation to identify the most predictive p-value threshold or shrinkage parameter, giving a relative improvement of 16-18% over pT+clump in the correlation between observed and predicted outcome values. Using pseudovalidation, the best methods were PRScs, DBSLMM and SBayesR. PRScs pseudovalidation was only 3% worse than the best polygenic score identified by 10-fold cross validation. Elastic net models containing polygenic scores based on a range of parameters consistently improved prediction over any single polygenic score. Within a reference-standardized framework, the best polygenic prediction was achieved using LDpred2, lassosum and PRScs, modeling multiple polygenic scores derived using multiple parameters. This study will help researchers performing polygenic score studies to select the most powerful and predictive analysis methods.


Subject(s)
Computer Simulation , Models, Genetic , Multifactorial Inheritance/genetics , Precision Medicine , Datasets as Topic , Genome-Wide Association Study , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results , Twin Studies as Topic , Twins/genetics , United Kingdom
19.
medRxiv ; 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33851187

ABSTRACT

Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.

SELECTION OF CITATIONS
SEARCH DETAIL
...