Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2681: 383-398, 2023.
Article in English | MEDLINE | ID: mdl-37405660

ABSTRACT

To select the most promising screening hits from antibody and VHH display campaigns for subsequent in-depth profiling and optimization, it is highly desirable to assess and select sequences on properties beyond only their binding signals from the sorting process. In addition, developability risk criteria, sequence diversity, and the anticipated complexity for sequence optimization are relevant attributes for hit selection and optimization. Here, we describe an approach for the in silico developability assessment of antibody and VHH sequences. This method not only allows for ranking and filtering multiple sequences with regard to their predicted developability properties and diversity, but also visualizes relevant sequence and structural features of potentially problematic regions and thereby provides rationales and starting points for multi-parameter sequence optimization.


Subject(s)
Antibodies
2.
Oncoimmunology ; 10(1): 1958590, 2021.
Article in English | MEDLINE | ID: mdl-34484871

ABSTRACT

Avelumab is an IgG1 anti-programmed death ligand 1 (anti-PD-L1) monoclonal antibody that has been approved as a monotherapy for metastatic Merkel cell carcinoma and advanced urothelial carcinoma, and in combination with axitinib for advanced renal cell carcinoma. Avelumab is cleared faster and has a shorter half-life than other anti-PD-L1 antibodies, such as atezolizumab and durvalumab, but the mechanisms underlying these differences are unknown. IgG antibodies can be cleared through receptor-mediated endocytosis after binding of the antibody Fab region to target proteins, or via Fcγ receptor (FcγR)-mediated endocytosis. Unlike other approved anti-PD-L1 antibodies, avelumab has a native Fc region that retains FcγR binding capability. We hypothesized that the rapid clearance of avelumab might be due to the synergistic effect of both FcγR-mediated and PD-L1 target-mediated internalization. To investigate this, we performed in vitro and in vivo studies that compared engineered variants of avelumab and atezolizumab to determine mechanisms of cellular internalization. We found that both FcγR and PD-L1 binding contribute to avelumab internalization. While FcγR binding was the dominant mechanism of avelumab internalization in vitro, with CD64 acting as the most important FcγR, studies in mice and cynomolgus monkeys showed that both FcγR and PD-L1 contribute to avelumab elimination, with PD-L1 binding playing a greater role. These studies suggest that the rapid internalization of avelumab might be due to simultaneous binding of both PD-L1 and FcγR in trans. Our findings also provide a basis to alter the clearance and half-life of monoclonal antibodies in therapeutic development.


Subject(s)
Carcinoma, Transitional Cell , Skin Neoplasms , Urinary Bladder Neoplasms , Animals , Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Humans , Mice , Receptors, IgG
3.
MAbs ; 13(1): 1932230, 2021.
Article in English | MEDLINE | ID: mdl-34116620

ABSTRACT

Understanding the pharmacokinetic (PK) properties of a drug, such as clearance, is a crucial step for evaluating efficacy. The PK of therapeutic antibodies can be complex and is influenced by interactions with the target, Fc-receptors, anti-drug antibodies, and antibody intrinsic factors. A growing body of literature has linked biophysical properties of antibodies, particularly nonspecific-binding propensity, hydrophobicity and charged regions to rapid clearance in preclinical species and selected human PK studies. A clear understanding of the connection between biophysical properties and their impact on PK would allow for early selection and optimization of antibodies and reduce costly attrition during clinical trials due to sub-optimal human clearance. Due to the difficulty in obtaining large and unbiased human PK data, previous studies have focused mostly on preclinical PK. For this study, we obtained and curated the most comprehensive clinical PK dataset to date and calculated accurate estimates of linear clearance for 64 monoclonal antibodies ranging from investigational candidates in Phase 2 trials to marketed products. This allows for the first time a deep analysis of the influence of biophysical and sequence-based in silico properties directly on human clearance. We use statistical analysis and a Random Forest classifier to identify properties that have the greatest influence in our dataset. Our findings indicate that in vitro poly-specificity assay and in silico estimated isoelectric point can discriminate fast and slow clearing antibodies, extending previous observations on preclinical clearance. This provides a simple yet powerful approach to select antibodies with desirable PK during early-stage screening.


Subject(s)
Antibodies, Monoclonal/blood , Antibodies, Monoclonal/pharmacokinetics , Blood Chemical Analysis/methods , Humans , Machine Learning
4.
Nat Commun ; 9(1): 1199, 2018 03 23.
Article in English | MEDLINE | ID: mdl-29572442

ABSTRACT

The B cell survival factor (TNFSF13B/BAFF) is often elevated in autoimmune diseases and is targeted in the clinic for the treatment of systemic lupus erythematosus. BAFF contains a loop region designated the flap, which is dispensable for receptor binding. Here we show that the flap of BAFF has two functions. In addition to facilitating the formation of a highly active BAFF 60-mer as shown previously, it also converts binding of BAFF to TNFRSF13C (BAFFR) into a signaling event via oligomerization of individual BAFF-BAFFR complexes. Binding and activation of BAFFR can therefore be targeted independently to inhibit or activate the function of BAFF. Moreover, structural analyses suggest that the flap of BAFF 60-mer temporarily prevents binding of an anti-BAFF antibody (belimumab) but not of a decoy receptor (atacicept). The observed differences in profiles of BAFF inhibition may confer distinct biological and clinical efficacies to these therapeutically relevant inhibitors.


Subject(s)
B-Cell Activating Factor/chemistry , B-Cell Activating Factor/physiology , B-Cell Activation Factor Receptor/chemistry , B-Lymphocytes/cytology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , B-Cell Activating Factor/genetics , Cell Differentiation , Cell Survival , Cross-Linking Reagents/chemistry , Female , Gene Knock-In Techniques , HEK293 Cells , Humans , Immunoglobulin Fragments/chemistry , Lymphopenia/metabolism , Male , Mice , Mice, Transgenic , Mutation , Protein Binding , Protein Domains , Recombinant Fusion Proteins/pharmacology
5.
BMC Res Notes ; 2: 256, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-20015372

ABSTRACT

BACKGROUND: Inference of gene regulatory networks (GRNs) requires accurate data, a method to simulate the expression patterns and an efficient optimization algorithm to estimate the unknown parameters. Using this approach it is possible to obtain alternative circuits without making any a priori assumptions about the interactions, which all simulate the observed patterns. It is important to analyze the properties of the circuits. FINDINGS: We have analyzed the simulated gene expression patterns of previously obtained circuits that describe gap gene dynamics during early Drosophila melanogaster embryogenesis. Using hierarchical clustering we show that amplitude variation and defects observed in the simulated gene expression patterns are linked to similar circuits, which can be grouped. Furthermore, analysis of the long-term dynamics revealed four main dynamical attractors comprising stable patterns and oscillatory patterns. In addition, we also performed a correlation analysis on the parameters showing an intricate correlation pattern. CONCLUSIONS: The analysis demonstrates that the obtained gap gene circuits are not unique showing variable long-term dynamics and highly correlating scattered parameters. Furthermore, although the model can simulate the pattern up to gastrulation and confirms several of the known regulatory interactions, it does not reproduce the transient expression of all gap genes as observed experimentally. We suggest that the shortcomings of the model may be caused by overfitting, incomplete model description and/or missing data.

6.
BMC Syst Biol ; 3: 94, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19769791

ABSTRACT

BACKGROUND: Inverse modelling of gene regulatory networks (GRNs) capable of simulating continuous spatio-temporal biological processes requires accurate data and a good description of the system. If quantitative relations between genes cannot be extracted from direct measurements, an efficient method to estimate the unknown parameters is mandatory. A model that has been proposed to simulate spatio-temporal gene expression patterns is the connectionist model. This method describes the quantitative dynamics of a regulatory network in space. The model parameters are estimated by means of model-fitting algorithms. The gene interactions are identified without making any prior assumptions concerning the network connectivity. As a result, the inverse modelling might lead to multiple circuits showing the same quantitative behaviour and it is not possible to identify one optimal circuit. Consequently, it is important to address the quality of the circuits in terms of model robustness. RESULTS: Here we investigate the sensitivity and robustness of circuits obtained from reverse engineering a model capable of simulating measured gene expression patterns. As a case study we use the early gap gene segmentation mechanism in Drosophila melanogaster. We consider the limitations of the connectionist model used to describe GRN Inferred from spatio-temporal gene expression. We address the problem of circuit discrimination, where the selection criterion within the optimization technique is based of the least square minimization on the error between data and simulated results. CONCLUSION: Parameter sensitivity analysis allows one to discriminate between circuits having significant parameter and qualitative differences but exhibiting the same quantitative pattern. Furthermore, we show that using a stochastic model derived from a deterministic solution, one can introduce fluctuations within the model to analyze the circuits' robustness. Ultimately, we show that there is a close relation between circuit sensitivity and robustness to fluctuation, and that circuit robustness is rather modular than global. The current study shows that reverse engineering of GRNs should not only focus on estimating parameters by minimizing the difference between observation and simulation but also on other model properties. Our study suggests that multi-objective optimization based on robustness and sensitivity analysis has to be considered.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , GTPase-Activating Proteins/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation/physiology , Models, Biological , Signal Transduction/physiology , Animals , Computer Simulation
7.
FEBS J ; 276(4): 886-902, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19215296

ABSTRACT

Mathematical models of biological processes have various applications: to assist in understanding the functioning of a system, to simulate experiments before actually performing them, to study situations that cannot be dealt with experimentally, etc. Some parameters in the model can be directly obtained from experiments or from the literature. Others have to be inferred by comparing model results to experiments. In this minireview, we discuss the identifiability of models, both intrinsic to the model and taking into account the available data. Furthermore, we give an overview of the most frequently used approaches to search the parameter space.


Subject(s)
Algorithms , Computer Simulation , Models, Biological , Systems Biology , Nonlinear Dynamics
8.
Bioinformatics ; 23(24): 3356-63, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17893088

ABSTRACT

MOTIVATION: Diffusable and non-diffusable gene products play a major role in body plan formation. A quantitative understanding of the spatio-temporal patterns formed in body plan formation, by using simulation models is an important addition to experimental observation. The inverse modelling approach consists of describing the body plan formation by a rule-based model, and fitting the model parameters to real observed data. In body plan formation, the data are usually obtained from fluorescent immunohistochemistry or in situ hybridizations. Inferring model parameters by comparing such data to those from simulation is a major computational bottleneck. An important aspect in this process is the choice of method used for parameter estimation. When no information on parameters is available, parameter estimation is mostly done by means of heuristic algorithms. RESULTS: We show that parameter estimation for pattern formation models can be efficiently performed using an evolution strategy (ES). As a case study we use a quantitative spatio-temporal model of the regulatory network for early development in Drosophila melanogaster. In order to estimate the parameters, the simulated results are compared to a time series of gene products involved in the network obtained with immunohistochemistry. We demonstrate that a (mu,lambda)-ES can be used to find good quality solutions in the parameter estimation. We also show that an ES with multiple populations is 5-140 times as fast as parallel simulated annealing for this case study, and that combining ES with a local search results in an efficient parameter estimation method.


Subject(s)
Body Patterning/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/physiology , Gene Expression Regulation, Developmental/physiology , Models, Biological , Animals , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...