Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Int ; 144: 106004, 2020 11.
Article in English | MEDLINE | ID: mdl-32745782

ABSTRACT

Pharmaceuticals are biologically active molecules that may exert toxic effects to a wide range of aquatic organisms. They are considered contaminants of emerging concern due to their common presence in wastewaters and in the receiving surface waters, and the lack of specific regulations to monitor their environmental occurrence and risks. In this work, the environmental exposure and risks of pharmaceuticals have been studied in the Mijares River, Eastern Mediterranean coast (Spain). A total of 57 surface water samples from 19 sampling points were collected in three monitoring campaigns between June 2018 and February 2019. A list of 40 compounds was investigated using a quantitative target UHPLC-MS/MS method. In order to complement the data obtained, a wide-scope screening of pharmaceuticals and metabolites was also performed by UHPLC-HRMS. The ecological risks posed by the pharmaceutical mixtures were evaluated using species sensitivity distributions built with chronic toxicity data for aquatic organisms. In this study, up to 69 pharmaceuticals and 9 metabolites were identified, out of which 35 compounds were assessed using the quantitative method. The highest concentrations in water corresponded to acetaminophen, gabapentin, venlafaxine, valsartan, ciprofloxacin and diclofenac. The compounds that were found to exert the highest toxic pressure on the aquatic ecosystems were principally analgesic/anti-inflammatory drugs and antibiotics. These were: phenazone > azithromycin > diclofenac, and to a lower extent norfloxacin > ciprofloxacin > clarithromycin. The monitored pharmaceutical mixtures are expected to exert severe ecological risks in areas downstream of WWTP discharges, with the percentage of aquatic species affected ranging between 65% and 82% in 3 out of the 19 evaluated sites. In addition, five antibiotics were found to exceed antibiotic resistance thresholds, thus potentially contributing to resistance gene enrichment in environmental bacteria. This work illustrates the wide use and impact of pharmaceuticals in the area under study, and the vulnerability of surface waters if only conventional wastewater treatments are applied. Several compounds included in this study should be incorporated in future water monitoring programs to help in the development of future regulations, due to their potential risk to the aquatic environment.


Subject(s)
Pharmaceutical Preparations , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Risk Assessment , Spain , Tandem Mass Spectrometry , Wastewater/analysis , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Res ; 177: 108570, 2019 10.
Article in English | MEDLINE | ID: mdl-31325630

ABSTRACT

The Water Framework Directive 2000/60/EC implemented by the European Union established as the main objectives to achieve a "good ecological and chemical status" of the surface water and a "good quantitative and chemical status" of groundwater bodies. One of the major pressures affecting water bodies comes from the use of pesticides and their potential presence in the water ecosystems. For this purpose, the reliable determination of pesticides and their transformation products (TPs) in natural waters (both surface and groundwater) is required. The high number of compounds potentially reaching the aquatic environment makes extraordinary difficult, if not impossible, to investigate all these compounds even using the most powerful analytical techniques. Among these, liquid chromatography coupled to high-resolution mass spectrometry is emphasized due to its strong potential for detection and identification of many organic contaminants thanks to the accurate-mass full spectrum acquisition data. This work focuses on wide-scope screening of many pesticides and their TPs in surface water and groundwater samples, collected between March and May 2017, in the Júcar River Hydrographical Basin, Spain. For this purpose, a home-made database containing more than 500 pesticides and TPs was employed. Analyses performed by liquid chromatography coupled to quadrupole-time of flight mass spectrometry (LC-QTOF MS) allowed the identification of up to 27 pesticides and 6 TPs. The most detected compounds in groundwater were the herbicides atrazine, simazine, terbuthylazine, and their TPs (atrazine-desethyl, terbumeton-desethyl and terbuthylazine-desethyl). Regarding surface water, the fungicides carbendazim, thiabendazole and imazalil, the herbicide terbutryn and the TP terbumeton-desethyl were also detected. These results illustrate the wide use of these compounds (in the present or in the recent past) in the area under study and the vulnerability of the water bodies, and are in accordance with previous findings in other water bodies of the different Spanish Hydrographic systems.


Subject(s)
Environmental Monitoring , Pesticides/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Ecosystem , Mass Spectrometry , Spain
SELECTION OF CITATIONS
SEARCH DETAIL