Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Cell Physiol ; 322(4): C794-C801, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35264016

ABSTRACT

It is well known that cholinergic hypofunction contributes to cardiac pathology, yet, the mechanisms involved remain unclear. Our previous study has shown that genetically engineered model of cholinergic deficit, the vesicular acetylcholine transporter knockdown homozygous (VAChT KDHOM) mice, exhibit pathological cardiac remodeling and a gradual increase in cardiac mass with aging. Given that an increase in cardiac mass is often caused by adrenergic hyperactivity, we hypothesized that VAChT KDHOM mice might have an increase in cardiac norepinephrine (NE) levels. We thus investigated the temporal changes in NE content in the heart from 3-, 6-, and 12-mo-old VAChT mutants. Interestingly, mice with cholinergic hypofunction showed a gradual elevation in cardiac NE content, which was already increased at 6 mo of age. Consistent with this finding, 6-mo-old VAChT KDHOM mice showed enhanced sympathetic activity and a greater abundance of tyrosine hydroxylase positive sympathetic nerves in the heart. VAChT mutants exhibited an increase in peak calcium transient, and mitochondrial oxidative stress in cardiomyocytes along with enhanced G protein-coupled receptor kinase 5 (GRK5) and nuclear factor of activated T-cells (NFAT) staining in the heart. These are known targets of adrenergic signaling in the cell. Moreover, vagotomized-mice displayed an increase in cardiac NE content confirming the data obtained in VAChT KDHOM mice. Establishing a causal relationship between acetylcholine and NE, VAChT KDHOM mice treated with pyridostigmine, a cholinesterase inhibitor, showed reduced cardiac NE content, rescuing the phenotype. Our findings unveil a yet unrecognized role of cholinergic signaling as a modulator of cardiac NE, providing novel insights into the mechanisms that drive autonomic imbalance.


Subject(s)
Cholinergic Agents , Norepinephrine , Adrenergic Agents , Animals , Mice , Myocytes, Cardiac , Vesicular Acetylcholine Transport Proteins/genetics
2.
Cell Calcium ; 91: 102264, 2020 11.
Article in English | MEDLINE | ID: mdl-32957029

ABSTRACT

Hepatic ischemia-reperfusion injury is seen in a variety of clinical conditions, including hepatic thrombosis, systemic hypotension, and liver transplantation. Calcium (Ca2+) signaling mediates several pathophysiological processes in the liver, but it is not known whether and how intracellular Ca2+ channels are involved in the hepatocellular events secondary to ischemia-reperfusion. Using an animal model of hepatic ischemia-reperfusion injury, we observed a progressive increase in expression of the type 3 isoform of the inositol trisphosphate receptor (ITPR3), an intracellular Ca2+ channel that is not normally expressed in healthy hepatocytes. ITPR3 expression was upregulated, at least in part, by a combination of demethylation of the ITPR3 promoter region and the increased transcriptional activity of the nuclear factor of activated T-cells (NFAT). Additionally, expression of pro-inflammatory interleukins and necrotic surface area were less pronounced in livers of control animals compared to liver-specific ITPR3 KO mice subjected to hepatic damage. Corroborating these findings, ITPR3 expression and activation of NFAT were observed in hepatocytes of liver biopsies from patients who underwent liver ischemia caused by thrombosis after organ transplant. Together, these results are consistent with the idea that ITPR3 expression in hepatocytes plays a protective role during hepatic injury induced by ischemia-reperfusion.


Subject(s)
Hepatocytes/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Liver/metabolism , Liver/pathology , Protective Agents/metabolism , Reperfusion Injury/metabolism , Animals , Calcium Signaling , DNA Demethylation , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/metabolism , Promoter Regions, Genetic/genetics
3.
Brain Behav Immun ; 81: 444-454, 2019 10.
Article in English | MEDLINE | ID: mdl-31271871

ABSTRACT

The gastrointestinal (GI) tract harbors commensal microorganisms as well as invasive bacteria, toxins and other pathogens and, therefore, plays a pivotal barrier and immunological role against pathogenic agents. The vagus nerve is an important regulator of the GI tract-associated immune system, having profound effects on inflammatory responses. Among GI tract organs, the liver is a key site of immune surveillance, as it has a large population of resident macrophages and receives the blood drained from the guts through the hepatic portal circulation. Although it is widely accepted that the hepatic tissue is a major target for vagus nerve fibers, the role of this neural circuit in liver immune functions is still poorly understood. Herein we used in vivo imaging techniques, including confocal microscopy and scintigraphy, to show that vagus nerve stimulation increases the phagocytosis activity by resident macrophages in the liver, even on the absence of an immune challenge. The activation of this neural circuit in a non-lethal model of sepsis optimized the removal of bacteria in the liver and resulted in the production of anti-inflammatory and pro-regenerative cytokines. Our findings provide new insights into the neural regulation of the immune system in the liver.


Subject(s)
Liver/immunology , Phagocytosis/physiology , Vagus Nerve/physiology , Animals , Cytokines , Female , Gastrointestinal Tract , Liver/pathology , Macrophages/immunology , Mice , Mice, Inbred C57BL , Phagocytes/metabolism , Sepsis/immunology , Vagus Nerve/pathology , Vagus Nerve Stimulation/methods
4.
Am J Physiol Gastrointest Liver Physiol ; 315(1): G80-G94, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29471671

ABSTRACT

Hepatocyte proliferation during liver regeneration is a well-coordinated process regulated by the activation of several growth factor receptors, including the insulin receptor (IR). The IR can be localized in part to cholesterol-enriched membrane microdomains, but the role of such domains in insulin-mediated events in hepatocytes is not known. We investigated whether partitioning of IRs into cholesterol-enriched membrane rafts is important for the mitogenic effects of insulin in the hepatic cells. IR and lipid rafts were labeled in HepG2 cells and primary rat hepatocytes. Membrane cholesterol was depleted in vitro with metyl-ß-cyclodextrin (MßCD) and in vivo with lovastatin. Insulin-induced calcium (Ca2+) signals studies were examined in HepG2 cells and in freshly isolated rat hepatocytes as well as in whole liver in vivo by intravital confocal imaging. Liver regeneration was studied by 70% partial hepatectomy (PH), and hepatocyte proliferation was assessed by PCNA staining. A subpopulation of IR was found in membrane microdomains enriched in cholesterol. Depletion of cholesterol from plasma membrane resulted in redistribution of the IR along the cells, which was associated with impaired insulin-induced nuclear Ca2+ signals, a signaling event that regulates hepatocyte proliferation. Cholesterol depletion also led to ERK1/2 hyper-phosphorylation. Lovastatin administration to rats decreased hepatic cholesterol content, disrupted lipid rafts and decreased insulin-induced Ca2+ signaling in hepatocytes, and delayed liver regeneration after PH. Therefore, membrane cholesterol content and lipid rafts integrity showed to be important for the proliferative effects of insulin in hepatic cells. NEW & NOTEWORTHY One of insulin's actions is to stimulate liver regeneration. Here we show that a subpopulation of insulin receptors is in a specialized cholesterol-enriched region of the cell membrane and this subfraction is important for insulin's proliferative effects.


Subject(s)
Calcium/metabolism , Cholesterol/metabolism , Hepatocytes/metabolism , Insulin/metabolism , Liver Regeneration/physiology , Membrane Microdomains/physiology , Receptor, Insulin/metabolism , Animals , Cell Proliferation/physiology , Rats , Signal Transduction/physiology
5.
Biomed Res Int ; 2016: 8601359, 2016.
Article in English | MEDLINE | ID: mdl-27314042

ABSTRACT

Platelet-activating factor (PAF) is known to be an important mediator of anaphylaxis. However, there is a lack of information in the literature about the role of PAF in food allergy. The aim of this work was to elucidate the participation of PAF during food allergy development and the consequent adipose tissue inflammation along with its alterations. Our data demonstrated that, both before oral challenge and after 7 days receiving ovalbumin (OVA) diet, OVA-sensitized mice lacking the PAF receptor (PAFR) showed a decreased level of anti-OVA IgE associated with attenuated allergic markers in comparison to wild type (WT) mice. Moreover, there was less body weight and adipose tissue loss in PAFR-deficient mice. However, some features of inflamed adipose tissue presented by sensitized PAFR-deficient and WT mice after oral challenge were similar, such as a higher rate of rolling leukocytes in this tissue and lower circulating levels of adipokines (resistin and adiponectin) in comparison to nonsensitized mice. Therefore, PAF signaling through PAFR is important for the allergic response to OVA but not for the adipokine alterations caused by this inflammatory process. Our work clarifies some effects of PAF during food allergy along with its role on the metabolic consequences of this inflammatory process.


Subject(s)
Adipokines/blood , Food Hypersensitivity/immunology , Food Hypersensitivity/metabolism , Platelet Membrane Glycoproteins/immunology , Platelet Membrane Glycoproteins/metabolism , Receptors, G-Protein-Coupled/immunology , Receptors, G-Protein-Coupled/metabolism , Adipose Tissue/immunology , Adipose Tissue/metabolism , Animal Feed , Animals , Biomarkers/blood , Body Weight/immunology , Diet , Food Hypersensitivity/blood , Immunoglobulin E/immunology , Inflammation/blood , Inflammation/immunology , Inflammation/metabolism , Leukocytes/immunology , Leukocytes/metabolism , Male , Mice , Mice, Inbred BALB C , Models, Animal , Ovalbumin/immunology
6.
Nutrition ; 32(2): 273-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26526965

ABSTRACT

OBJECTIVE: Allergic mice show a reduction in body weight and adiposity with a higher inflammatory response in the adipose tissue similar to obese fat tissue. This study aimed to evaluate whether the low-grade inflammatory milieu of mice with diet-induced mild obesity interferes with the allergic response induced by ovalbumin (OVA). METHODS: BALB/c mice were divided into four groups: 1) non-allergic (OVA-) mice fed chow diet, 2) allergic (OVA+) mice fed chow diet, 3) OVA- mice fed high-refined carbohydrate-containing (HC) diet, and 4) OVA+ mice fed HC diet. After 5 wk, allergic groups were sensitized with OVA and received a booster 14 d later. All groups received an oral OVA challenge 7 d after the booster. RESULTS: Allergic groups showed increased serum levels of total IgE, anti-OVA IgE, and IgG1; a high disease activity index score; aversion to OVA; and increased intestinal eosinophil infiltration. Non-allergic mild-obese mice also showed aversion to OVA and an increased number of eosinophils in the proximal jejunum. After the allergic challenge, OVA+ mice fed chow diet showed weight loss and lower adiposity in several adipose tissue depots. OVA+ mice fed HC diet showed a loss of fat mass only in the mesenteric adipose tissue. Furthermore, increased levels of TNF, IL-6, and IL-10 were observed in this tissue. CONCLUSIONS: Our data show that mild-obese allergic mice do not present severe pathologic features of food allergy similar to those exhibited by lean allergic mice. Mild obesity promoted by HC diet ingestion causes important intestinal disorders that appear to modulate the inflammatory response during the antigen challenge.


Subject(s)
Diet , Dietary Carbohydrates/administration & dosage , Food Hypersensitivity/immunology , Adipose Tissue/metabolism , Adiposity , Animals , Body Weight , Food Hypersensitivity/blood , Glucose Tolerance Test , Immunoglobulin E/blood , Immunoglobulin G/blood , Inflammation/blood , Inflammation/immunology , Insulin Resistance , Interleukin-10/blood , Interleukin-6/blood , Intestinal Mucosa/metabolism , Intestines/immunology , Leukocyte Count , Male , Mice , Mice, Inbred BALB C , Obesity/metabolism , Ovalbumin/immunology
7.
Cell Immunol ; 298(1-2): 47-53, 2015.
Article in English | MEDLINE | ID: mdl-26364716

ABSTRACT

Food allergy is an adverse immune response to dietary proteins. Hydrolysates are frequently used for children with milk allergy. However, hydrolysates effects afterwards are poorly studied. The aim of this study was to investigate the immunological consequences of hydrolyzed whey protein in allergic mice. For that, we developed a novel model of food allergy in BALB/c mice sensitized with alum-adsorbed ß-lactoglobulin. These mice were orally challenged with either whey protein or whey hydrolysate. Whey-challenged mice had elevated levels of specific IgE and lost weight. They also presented gut inflammation, enhanced levels of SIgA and IL-5 as well as decreased production of IL-4 and IL-10 in the intestinal mucosa. Conversely, mice challenged with hydrolyzate maintained normal levels of IgE, IL-4 and IL-5 and showed no sign of gut inflammation probably due to increased IL-12 production in the gut. Thus, consumption of hydrolysate prevented the development of clinical signs of food allergy in mice.


Subject(s)
Intestinal Mucosa/immunology , Lactoglobulins/immunology , Milk Hypersensitivity/immunology , Protein Hydrolysates/immunology , Whey Proteins/immunology , Animals , Disease Models, Animal , Food Hypersensitivity/immunology , Immunoglobulin A, Secretory/immunology , Immunoglobulin A, Secretory/metabolism , Immunoglobulin E/blood , Inflammation/immunology , Interleukin-10/metabolism , Interleukin-12 Subunit p35/biosynthesis , Interleukin-12 Subunit p35/immunology , Interleukin-4/metabolism , Interleukin-5/metabolism , Male , Mice , Mice, Inbred BALB C , Protein Hydrolysates/administration & dosage , Whey/immunology , Whey Proteins/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...