Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 22(9): 1073-1086, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37365121

ABSTRACT

Targeted alpha therapies (TAT) are an innovative class of therapies for cancer treatment. The unique mode-of-action of TATs is the induction of deleterious DNA double-strand breaks. Difficult-to-treat cancers, such as gynecologic cancers upregulating the chemoresistance P-glycoprotein (p-gp) and overexpressing the membrane protein mesothelin (MSLN), are promising targets for TATs. Here, based on the previous encouraging findings with monotherapy, we investigated the efficacy of the mesothelin-targeted thorium-227 conjugate (MSLN-TTC) both as monotherapy and in combination with chemotherapies and antiangiogenic compounds in ovarian and cervical cancer models expressing p-gp. MSLN-TTC monotherapy showed equal cytotoxicity in vitro in p-gp-positive and -negative cancer cells, while chemotherapeutics dramatically lost activity on p-gp-positive cancer cells. In vivo, MSLN-TTC exhibited dose-dependent tumor growth inhibition with treatment/control ratios of 0.03-0.44 in various xenograft models irrespective of p-gp expression status. Furthermore, MSLN-TTC was more efficacious in p-gp-expressing tumors than chemotherapeutics. In the MSLN-expressing ST206B ovarian cancer patient-derived xenograft model, MSLN-TTC accumulated specifically in the tumor, which combined with pegylated liposomal doxorubicin (Doxil), docetaxel, bevacizumab, or regorafenib treatment induced additive-to-synergistic antitumor efficacy and substantially increased response rates compared with respective monotherapies. The combination treatments were well tolerated and only transient decreases in white and red blood cells were observed. In summary, we demonstrate that MSLN-TTC treatment shows efficacy in p-gp-expressing models of chemoresistance and has combination potential with chemo- and antiangiogenic therapies.


Subject(s)
Mesothelin , Humans , Female , GPI-Linked Proteins , Cell Line, Tumor , Drug Resistance
2.
Appl Radiat Isot ; 156: 108985, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32056685

ABSTRACT

Auger electron therapy is an attractive modality for targeting microscopic tumors. Rhodium-103 m (103mRh, T½â€¯= 56.1 min) is a promising Auger electron emitter that can be obtained as the decay product of palladium-103 (103Pd, T½â€¯= 16.99 days). 103Pd was chelated in a lipophilic derivative of the 16aneS4 macrocycle and the complex was trapped on a C18 cartridge. Elution with dilute hydrochloric acid gave radiochemically pure 103mRh. We hypothesize this to be through a combination of the Szilard-Chalmers effect and transient ionization.

3.
Dalton Trans ; 47(28): 9283-9293, 2018 Jul 17.
Article in English | MEDLINE | ID: mdl-29796500

ABSTRACT

The ionophore 8-hydroxyquinoline (oxine) has been used to radiolabel cells and liposomal medicines with 111In and, more recently, 89Zr, for medical nuclear imaging applications. Oxine has also shown promising ionophore activity for the positron-emitting radionuclide 52Mn that should allow imaging of labelled cells and nanomedicines for long periods of time (>14 days). However, to date, the radiometal complex formed and its full labelling capabilities have not been fully characterised. Here, we provide supporting evidence of the formation of [52Mn]Mn(oxinate)2 as the metastable complex responsible for its ionophore activity. The cell labelling properties of [52Mn]Mn(oxinate)2 were investigated with various cell lines. The liposomal nanomedicine, DOXIL® (Caelyx) was also labelled with [52Mn]Mn(oxinate)2 and imaged in vivo using PET imaging. [52Mn]Mn(oxinate)2 was able to label various cell lines with moderate efficiency (15-53%), however low cellular retention of 52Mn (21-25% after 24 h) was observed which was shown not to be due to cell death. PET imaging of [52Mn]Mn-DOXIL at 1 h and 24 h post-injection showed the expected pharmacokinetics and biodistribution of this stealth liposome, but at 72 h post-injection showed a profile matching that of free 52Mn, consistent with drug release. We conclude that oxine is an effective ionophore for 52Mn, but high cellular efflux of the isotope limits its use for prolonged cell tracking. [52Mn]Mn(oxinate)2 is effective for labelling and tracking DOXIL in vivo. The release of free radionuclide after liposome extravasation could provide a non-invasive method to monitor drug release in vivo.


Subject(s)
Antibiotics, Antineoplastic/administration & dosage , Doxorubicin/analogs & derivatives , Ionophores/administration & dosage , Manganese , Oxyquinoline/administration & dosage , Radioisotopes , Animals , Antibiotics, Antineoplastic/pharmacokinetics , Blood Platelets , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/administration & dosage , Doxorubicin/pharmacokinetics , Female , HEK293 Cells , Humans , Intraepithelial Lymphocytes , Ionophores/chemistry , Ionophores/pharmacokinetics , Isotope Labeling , Liposomes , Mice , Nanomedicine , Oxyquinoline/chemistry , Oxyquinoline/pharmacokinetics , Polyethylene Glycols/administration & dosage , Polyethylene Glycols/pharmacokinetics , Positron-Emission Tomography
4.
Med Phys ; 44(11): 6053-6060, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28857193

ABSTRACT

PURPOSE: To provide a faster and more intuitive way of designing shielding for PET facilities, while still relying on the principles of the AAPM 108 Taskforce guidelines, as well as illustrating the calculation output using dose maps that are easily evaluated. METHODS: A graphical user interface was developed, implementing an inverse AAPM method, wherein radiation sources and shield barriers are manually defined. Simulations are calculated using a user-defined control mesh grid. DoseMapper simulations were verified against manual calculations using the AAPM guidelines, as well as compared with in situ dose rate measurements using four different dosemeters. RESULTS: DoseMapper simulations were virtually identical to manual calculations using AAPM guidelines, with a maximum relative error of <0.01%. Comparison with in situ measurements showed that DoseMapper-simulated dose rates in all instances are higher than what can be measured, ensuring that no unintended hotspots can be overlooked in the shielding design. CONCLUSIONS: DoseMapper is an easy to use implementation of the AAPM 108 Taskforce principles that allows for a rapid iterative design process of shielding in PET facilities, and the resulting maps of dose rate and annual accumulated dose serve as clear documentation for the design.


Subject(s)
Computer Graphics , Models, Theoretical , Positron Emission Tomography Computed Tomography/instrumentation , Radiation Protection/instrumentation , User-Computer Interface , Positron Emission Tomography Computed Tomography/adverse effects , Reproducibility of Results
5.
Theranostics ; 7(14): 3398-3414, 2017.
Article in English | MEDLINE | ID: mdl-28912884

ABSTRACT

Invasive pulmonary aspergillosis (IPA) is a life-threatening lung disease of hematological malignancy or bone marrow transplant patients caused by the ubiquitous environmental fungus Aspergillus fumigatus. Current diagnostic tests for the disease lack sensitivity as well as specificity, and culture of the fungus from invasive lung biopsy, considered the gold standard for IPA detection, is slow and often not possible in critically ill patients. In a previous study, we reported the development of a novel non-invasive procedure for IPA diagnosis based on antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI) using a [64Cu]DOTA-labeled mouse monoclonal antibody (mAb), mJF5, specific to Aspergillus. To enable translation of the tracer to the clinical setting, we report here the development of a humanised version of the antibody (hJF5), and pre-clinical imaging of lung infection using a [64Cu]NODAGA-hJF5 tracer. The humanised antibody tracer shows a significant increase in in vivo biodistribution in A. fumigatus infected lungs compared to its radiolabeled murine counterpart [64Cu]NODAGA-mJF5. Using reverse genetics of the pathogen, we show that the antibody binds to the antigenic determinant ß1,5-galactofuranose (Galf) present in a diagnostic mannoprotein antigen released by the pathogen during invasive growth in the lung. The absence of the epitope Galf in mammalian carbohydrates, coupled with the enhanced imaging capabilities of the hJF5 antibody, means that the [64Cu]NODAGA-hJF5 tracer developed here represents an ideal candidate for the diagnosis of IPA and translation to the clinical setting.


Subject(s)
Antibodies, Fungal/immunology , Antibodies, Monoclonal, Humanized/immunology , Aspergillosis/diagnostic imaging , Positron-Emission Tomography/methods , Radiopharmaceuticals/immunology , Acetates/chemistry , Animals , Aspergillus nidulans/immunology , Aspergillus nidulans/pathogenicity , CHO Cells , Copper Radioisotopes/chemistry , Cricetinae , Cricetulus , Female , Heterocyclic Compounds, 1-Ring/chemistry , Magnetic Resonance Imaging/methods , Mice , Mice, Inbred C57BL , Radiopharmaceuticals/chemistry
6.
Neuroimage ; 158: 112-125, 2017 09.
Article in English | MEDLINE | ID: mdl-28669916

ABSTRACT

Manganese in its divalent state (Mn2+) has features that make it a unique tool for tracing neuronal pathways. It is taken up and transported by neurons in an activity-dependent manner and it can cross synapses. It also acts as a contrast agent for magnetic resonance imaging (MRI) enabling visualization of neuronal tracts. However, due to the limited sensitivity of MRI systems relatively high Mn2+ doses are required. This is undesirable, especially in long-term studies, because of the known toxicity of the metal. In order to overcome this limitation, we propose 52Mn as a positron emission tomography (PET) neuronal tract tracer. We used 52Mn for imaging dopaminergic pathways after a unilateral injection into the ventral tegmental area (VTA), as well as the striatonigral pathway after an injection into the dorsal striatum (STR) in rats. Furthermore, we tested potentially noxious effects of the radioactivity dose with a behavioral test and histological staining. 24 h after 52Mn administration, the neuronal tracts were clearly visible in PET images and statistical analysis confirmed the observed distribution of the tracer. We noticed a behavioral impairment in some animals treated with 170 kBq of 52Mn, most likely caused by dysfunction of dopaminergic cells. Moreover, there was a substantial DNA damage in the brain tissue after applying 150 kBq of the tracer. However, all those effects were completely eliminated by reducing the 52Mn dose to 20-30 kBq. Crucially, the reduced dose was still sufficient for PET imaging.


Subject(s)
Brain Mapping/methods , Brain/drug effects , Manganese/toxicity , Positron-Emission Tomography/methods , Radiopharmaceuticals/toxicity , Animals , Male , Radioisotopes/toxicity , Rats
7.
Front Med (Lausanne) ; 4: 98, 2017.
Article in English | MEDLINE | ID: mdl-28748183

ABSTRACT

140Nd (t1/2 = 3.4 days), owing to its short-lived positron emitting daughter 140Pr (t1/2 = 3.4 min), has promise as an in vivo generator for positron emission tomography (PET). However, the electron capture decay of 140Nd is chemically disruptive to macrocycle-based radiolabeling, meaning that an in vivo redistribution of the daughter 140Pr is expected before positron emission. The purpose of this study was to determine how the delayed positron from the de-labeled 140Pr affects preclinical imaging with 140Nd. To explore the effect, 140Nd was produced at CERN-ISOLDE, reacted with the somatostatin analogue, DOTA-LM3 (1,4,7,10- tetraazacyclododecane, 1,4,7- tri acetic acid, 10- acetamide N - p-Cl-Phecyclo(d-Cys-Tyr-d-4-amino-Phe(carbamoyl)-Lys-Thr-Cys)d-Tyr-NH2) and injected into H727 xenograft bearing mice. Comparative pre- and post-mortem PET imaging at 16 h postinjection was used to quantify the in vivo redistribution of 140Pr following 140Nd decay. The somatostatin receptor-positive pancreas exhibited the highest tissue accumulation of 140Nd-DOTA-LM3 (13% ID/g at 16 h) coupled with the largest observed redistribution rate, where 56 ± 7% (n = 4, mean ± SD) of the in situ produced 140Pr washed out of the pancreas before decay. Contrastingly, the liver, spleen, and lungs acted as strong sink organs for free 140Pr3+. Based upon these results, we conclude that 140Nd imaging with a non-internalizing vector convolutes the biodistribution of the tracer with the accumulation pattern of free 140Pr. This redistribution phenomenon may show promise as a probe of the cellular interaction with the vector, such as in determining tissue dependent internalization behavior.

8.
Appl Radiat Isot ; 121: 38-43, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28024217

ABSTRACT

Pressed chromium-powder cyclotron targets were irradiated with 16MeV protons, producing 52Mn with average yields of 6.2±0.8MBq/µAh. Separation by solid-phase anion exchange from ethanol-HCl mixtures recovered 94.3±1.7% of 52Mn and reduced the chromium content by a factor of 2.2±0.4×105. An additional AG 1-X8 column was used to remove copper, iron, cobalt and zinc impurities from the prepared 52Mn in 8M HCl. The macrocyclic chelator DOTA was rapidly radiolabeled with 52Mn in aq. ammonium acetate (pH 7.5R.T.) with a radiochemical yield >99% within 1min and was stable for >2 days in bovine serum. The improved separation and purification methodology facilitates the use of 52Mn in basic science and preclinical investigations.

9.
Bioinorg Chem Appl ; 2016: 6148357, 2016.
Article in English | MEDLINE | ID: mdl-28058040

ABSTRACT

In vivo radionuclide generators make complex combinations of physical and chemical properties available for medical diagnostics and therapy. Perhaps the best-known in vivo generator is 212Pb/212Bi, which takes advantage of the extended half-life of 212Pb to execute a targeted delivery of the therapeutic short-lived α-emitter 212Bi. Often, as in the case of 81Rb/81Kr, chemical changes resulting from the transmutation of the parent are relied upon for diagnostic value. In other instances such as with extended alpha decay chains, chemical changes may lead to unwanted consequences. This article reviews some common and not-so-common in vivo generators with the purpose of understanding their value in medicine and medical research. This is currently relevant in light of a recent push for alpha emitters in targeted therapies, which often come with extended decay chains.

11.
Bioconjug Chem ; 26(10): 2118-24, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26317429

ABSTRACT

(52)Mn (t1/2 = 5.59 d, ß(+) = 29.6%, Eßave = 0.24 MeV) shows promise in positron emission tomography (PET) and in dual-modality manganese-enhanced magnetic resonance imaging (MEMRI) applications including neural tractography, stem cell tracking, and biological toxicity studies. The extension to bioconjugate application requires high-specific-activity (52)Mn in a state suitable for macromolecule labeling. To that end a (52)Mn production, purification, and labeling system is presented, and its applicability in preclinical, macromolecule PET is shown using the conjugate (52)Mn-DOTA-TRC105. (52)Mn is produced by 60 µA, 16 MeV proton irradiation of natural chromium metal pressed into a silver disc support. Radiochemical separation proceeds by strong anion exchange chromatography of the dissolved Cr target, employing a semiorganic mobile phase, 97:3 (v:v) ethanol:HCl (11 M, aqueous). The method is 62 ± 14% efficient (n = 7) in (52)Mn recovery, leading to a separation factor from Cr of (1.6 ± 1.0) × 10(6) (n = 4), and an average effective specific activity of 0.8 GBq/µmol (n = 4) in titration against DOTA. (52)Mn-DOTA-TRC105 conjugation and labeling demonstrate the potential for chelation applications. In vivo images acquired using PET/CT in mice bearing 4T1 xenograft tumors are presented. Peak tumor uptake is 18.7 ± 2.7%ID/g at 24 h post injection and ex vivo (52)Mn biodistribution validates the in vivo PET data. Free (52)Mn(2+) (as chloride or acetate) is used as a control in additional mice to evaluate the nontargeted biodistribution in the tumor model.


Subject(s)
Isotope Labeling/methods , Manganese/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry , Animals , Antibodies, Monoclonal/chemistry , Chromium/chemistry , Female , Heterocyclic Compounds, 1-Ring/chemistry , Magnetic Resonance Imaging/methods , Manganese/pharmacokinetics , Mice, Inbred BALB C , Radiochemistry/methods , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Tissue Distribution , Xenograft Model Antitumor Assays
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(1 Pt 1): 010901, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20866557

ABSTRACT

Many human diseases are associated with protein aggregation and fibrillation. We present experiments on in vitro glucagon fibrillation using total internal reflection fluorescence microscopy, providing real-time measurements of single-fibril growth. We find that amyloid fibrils grow in an intermittent fashion, with periods of growth followed by long pauses. The observed exponential distributions of stop and growth times support a Markovian model, in which fibrils shift between the two states with specific rates. Even if the individual rates vary considerably, we observe that the probability of being in the growing (stopping) state is very close to 1/4 (3/4) in all experiments.


Subject(s)
Amyloid/chemistry , Amyloid/ultrastructure , Models, Chemical , Models, Molecular , Computer Simulation , Crystallization/methods , Kinetics , Multiprotein Complexes/chemistry , Multiprotein Complexes/ultrastructure , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...