Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Implement Sci ; 17(1): 64, 2022 09 29.
Article in English | MEDLINE | ID: mdl-36175963

ABSTRACT

BACKGROUND: In response to the US opioid epidemic, significant national campaigns have been launched to expand access to `opioid use disorder (MOUD). While adoption has increased in general medical care settings, specialty addiction programs have lagged in both reach and adoption. Elevating the quality of implementation strategy, research requires more precise methods in tailoring strategies rather than a one-size-fits-all-approach, documenting participant engagement and fidelity to the delivery of the strategy, and conducting an economic analysis to inform decision making and policy. Research has yet to incorporate all three of these recommendations to address the challenges of implementing and sustaining MOUD in specialty addiction programs. METHODS: This project seeks to recruit 72 specialty addiction programs in partnership with the Washington State Health Care Authority and employs a measurement-based stepped implementation-to-target approach within an adaptive trial design. Programs will be exposed to a sequence of implementation strategies of increasing intensity and cost: (1) enhanced monitoring and feedback (EMF), (2) 2-day workshop, and then, if outcome targets are not achieved, randomization to either internal facilitation or external facilitation. The study has three aims: (1) evaluate the sequential impact of implementation strategies on target outcomes, (2) examine contextual moderators and mediators of outcomes in response to the strategies, and (3) document and model costs per implementation strategy. Target outcomes are organized by the RE-AIM framework and the Addiction Care Cascade. DISCUSSION: This implementation project includes elements of a sequential multiple assignment randomized trial (SMART) design and a criterion-based design. An innovative and efficient approach, participating programs only receive the implementation strategies they need to achieve target outcomes. Findings have the potential to inform implementation research and provide key decision-makers with evidence on how to address the opioid epidemic at a systems level. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov (NCT05343793) on April 25, 2022.


Subject(s)
Opioid-Related Disorders , Analgesics, Opioid/therapeutic use , Delivery of Health Care , Humans , Opioid-Related Disorders/drug therapy , Research Design , Washington
2.
Neuropsychopharmacology ; 47(4): 891-901, 2022 03.
Article in English | MEDLINE | ID: mdl-34564712

ABSTRACT

Stress-induced release of dynorphins (Dyn) activates kappa opioid receptors (KOR) in serotonergic neurons to produce dysphoria and potentiate drug reward; however, the circuit mechanisms responsible for this effect are not known. In male mice, we found that conditional deletion of KOR from Slc6a4 (SERT)-expressing neurons blocked stress-induced potentiation of cocaine conditioned place preference (CPP). Within the dorsal raphe nucleus (DRN), two overlapping populations of KOR-expressing neurons: Slc17a8 (VGluT3) and SERT, were distinguished functionally and anatomically. Optogenetic inhibition of these SERT+ neurons potentiated subsequent cocaine CPP, whereas optical inhibition of the VGluT3+ neurons blocked subsequent cocaine CPP. SERT+/VGluT3- expressing neurons were concentrated in the lateral aspect of the DRN. SERT projections from the DRN were observed in the medial nucleus accumbens (mNAc), but VGluT3 projections were not. Optical inhibition of SERT+ neurons produced place aversion, whereas optical stimulation of SERT+ terminals in the mNAc attenuated stress-induced increases in forced swim immobility and subsequent cocaine CPP. KOR neurons projecting to mNAc were confined to the lateral aspect of the DRN, and the principal source of dynorphinergic (Pdyn) afferents in the mNAc was from local neurons. Excision of Pdyn from the mNAc blocked stress-potentiation of cocaine CPP. Prior studies suggested that stress-induced dynorphin release within the mNAc activates KOR to potentiate cocaine preference by a reduction in 5-HT tone. Consistent with this hypothesis, a transient pharmacological blockade of mNAc 5-HT1B receptors potentiated subsequent cocaine CPP. 5-HT1B is known to be expressed on 5-HT terminals in NAc, and 5-HT1B transcript was also detected in Pdyn+, Adora2a+ and ChAT+ (markers for direct pathway, indirect pathway, and cholinergic interneurons, respectively). Following stress exposure, 5-HT1B transcript was selectively elevated in Pdyn+ cells of the mNAc. These findings suggest that Dyn/KOR regulates serotonin activation of 5HT1B receptors within the mNAc and dynamically controls stress response, affect, and drug reward.


Subject(s)
Cocaine , Animals , Cocaine/pharmacology , Male , Mice , Mice, Inbred C57BL , Nucleus Accumbens , Receptors, Opioid, kappa/metabolism , Serotonin/metabolism
3.
J Neurosci ; 38(37): 8031-8043, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30076211

ABSTRACT

Activation of κ opioid receptors (KORs) produces analgesia and aversion via distinct intracellular signaling pathways, but whether G protein-biased KOR agonists can be designed to have clinical utility will depend on a better understanding of the signaling mechanisms involved. We found that KOR activation produced conditioned place aversion and potentiated CPP for cocaine in male and female C57BL/6N mice. Consistent with this, males and females both showed arrestin-mediated increases in phospho-p38 MAPK following KOR activation. Unlike in males, however, KOR activation had inconsistent analgesic effects in females and KOR increased Gßγ-mediated ERK phosphorylation in males, but not females. KOR desensitization was not responsible for the lack of response in females because neither Grk3 nor Pdyn gene knock-out enhanced analgesia. Instead, responsiveness was estrous cycle dependent because KOR analgesia was evident during low estrogen phases of the cycle and in ovariectomized (OVX) females. Estradiol treatment of OVX females suppressed KOR-mediated analgesia, demonstrating that estradiol was sufficient to blunt Gßγ-mediated KOR signals. G protein-coupled receptor kinase 2 (GRK2) is known to regulate ERK activation, and we found that the inhibitory, phosphorylated form of GRK2 was significantly higher in intact females. GRK2/3 inhibition by CMPD101 increased KOR stimulation of phospho-ERK in females, decreased sex differences in KOR-mediated inhibition of dopamine release, and enhanced mu opioid receptor and KOR-mediated analgesia in females. In OVX females, estradiol increased the association between GRK2 and Gßγ. These studies suggest that estradiol, through increased phosphorylation of GRK2 and possible sequestration of Gßγ by GRK2, blunts G protein-mediated signals.SIGNIFICANCE STATEMENT Chronic pain disorders are more prevalent in females than males, but opioid receptor agonists show inconsistent analgesic efficacy in females. κ opioid receptor (KOR) agonists have been tested in clinical trials for treating pain disorders based on their analgesic properties and low addictive potential. However, the molecular mechanisms underlying sex differences in KOR actions were previously unknown. Our studies identify an intracellular mechanism involving estradiol regulation of G protein-coupled receptor kinase 2 that is responsible for sexually dimorphic analgesic responses following opioid receptor activation. Understanding this mechanism will be critical for developing effective nonaddictive opioid analgesics for use in women and characterizing sexually dimorphic effects in other inhibitory G protein-coupled receptor signaling responses.


Subject(s)
Avoidance Learning/physiology , Conditioning, Operant/physiology , Estradiol/pharmacology , Receptors, Opioid, kappa/metabolism , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Analgesia , Analgesics, Opioid/pharmacology , Animals , Avoidance Learning/drug effects , Cocaine/pharmacology , Conditioning, Operant/drug effects , Estrous Cycle , Female , Male , Mice , Morphine/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Narcotics/pharmacology , Ovariectomy , Phosphorylation , Receptors, Opioid, kappa/agonists , Signal Transduction/drug effects , Signal Transduction/physiology , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Neuropsychopharmacology ; 43(2): 362-372, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28649993

ABSTRACT

The dynorphin/κ-opioid receptor (KOR) system has been previously implicated in the regulation of cognition, but the neural circuitry and molecular mechanisms underlying KOR-mediated cognitive disruption are unknown. Here, we used an operational test of cognition involving timing and behavioral inhibition and found that systemic KOR activation impairs performance of male and female C57BL/6 mice in the differential reinforcement of low response rate (DRL) task. Systemic KOR antagonism also blocked stress-induced disruptions of DRL performance. KOR activation increased 'bursts' of incorrect responses in the DRL task and increased marble burying, suggesting that the observed disruptions in DRL performance may be attributed to KOR-induced increases in compulsive behavior. Local inactivation of KOR by injection of the long-acting antagonist nor-BNI in the ventral tegmental area (VTA), but not the infralimbic prefrontal cortex (PFC) or dorsal raphe nucleus (DRN), prevented disruption of DRL performance caused by systemic KOR activation. Cre-dependent genetic excision of KOR from dopaminergic, but not serotonergic neurons, also blocked KOR-mediated disruption of DRL performance. At the molecular level, we found that these disruptive effects did not require arrestin-dependent signaling, because neither global deletion of G-protein receptor kinase 3 (GRK3) nor cell-specific deletion of GRK3/arrestin-dependent p38α MAPK from dopamine neurons blocked KOR-mediated DRL disruptions. We then showed that nalfurafine, a clinically available G-biased KOR agonist, could also produce DRL disruptions. Together, these studies demonstrate that KOR activation in VTA dopamine neurons disrupts behavioral inhibition in a GRK3/arrestin-independent manner and suggests that KOR antagonists could be beneficial for decreasing stress-induced compulsive behaviors.


Subject(s)
Behavior, Animal/physiology , Compulsive Behavior/physiopathology , Dopaminergic Neurons/metabolism , Dorsal Raphe Nucleus/drug effects , Inhibition, Psychological , Narcotic Antagonists/pharmacology , Prefrontal Cortex/drug effects , Receptors, Opioid, kappa/metabolism , Reinforcement, Psychology , Stress, Psychological/complications , Ventral Tegmental Area/drug effects , Animals , Behavior, Animal/drug effects , Compulsive Behavior/drug therapy , Compulsive Behavior/etiology , Disease Models, Animal , Female , Male , Mice , Mice, Inbred C57BL , Morphinans/pharmacology , Naltrexone/analogs & derivatives , Naltrexone/pharmacology , Narcotic Antagonists/administration & dosage , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Spiro Compounds/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL