Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 241: 115997, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38325191

ABSTRACT

In the present study the compositional analysis of the amino acids released by the acidic hydrolysis of the vaccine antigens was approached as an alternative to the dye-binding methods, for improvement of the quality control. In particular, the Analytical Quality by Design principles were undertaken in optimizing the hydrolysis conditions of the antigens to be applied prior to the quantitation by UHPLC-UV. Bexsero was used as a case study; it is a recombinant meningococcal B vaccine and one of its critical quality attributes is the content of the three core protein antigens, namely Neisseria Heparin Binding Antigen, factor H binding protein and Neisseria adhesin A, in the final formulation. Conventionally, the proteins quantitation is carried out by dye-binding assays. Analytical Target Profile was defined as the accurate determination of amounts of the Bexsero antigens. The Critical Method Parameters were chosen by means of the cause-effect matrix. A Face Centered Design was used to select the experiments to investigate the process and finally a Method Operable Design Region with a risk of failure of 5% was defined. The selected working point for routine use was: hydrolysis time, 17 hrs; temperature, 112 °C; 6 M HCl volume, 300 µl; antioxidant 90% phenol volume, 5 µl.


Subject(s)
Antigens, Bacterial , Meningococcal Vaccines , Amino Acids , Hydrolysis , Chromatography, High Pressure Liquid
2.
Genes (Basel) ; 14(3)2023 02 25.
Article in English | MEDLINE | ID: mdl-36980849

ABSTRACT

Beta-like globin gene expression is developmentally regulated during life by transcription factors, chromatin looping and epigenome modifications of the ß-globin locus. Epigenome modifications, such as histone methylation/demethylation and acetylation/deacetylation and DNA methylation, are associated with up- or down-regulation of gene expression. The understanding of these mechanisms and their outcome in gene expression has paved the way to the development of new therapeutic strategies for treating various diseases, such as ß-hemoglobinopathies. Histone deacetylase and DNA methyl-transferase inhibitors are currently being tested in clinical trials for hemoglobinopathies patients. However, these approaches are often uncertain, non-specific and their global effect poses serious safety concerns. Epigenome editing is a recently developed and promising tool that consists of a DNA recognition domain (zinc finger, transcription activator-like effector or dead clustered regularly interspaced short palindromic repeats Cas9) fused to the catalytic domain of a chromatin-modifying enzyme. It offers a more specific targeting of disease-related genes (e.g., the ability to reactivate the fetal γ-globin genes and improve the hemoglobinopathy phenotype) and it facilitates the development of scarless gene therapy approaches. Here, we summarize the mechanisms of epigenome regulation of the ß-globin locus, and we discuss the application of epigenome editing for the treatment of hemoglobinopathies.


Subject(s)
Epigenesis, Genetic , Hemoglobinopathies , Humans , Epigenesis, Genetic/genetics , Epigenome , Hemoglobinopathies/genetics , Hemoglobinopathies/therapy , beta-Globins/genetics , beta-Globins/metabolism , Chromatin , DNA/metabolism
3.
Nat Commun ; 13(1): 6618, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333351

ABSTRACT

Sickle cell disease and ß-thalassemia affect the production of the adult ß-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e., the hereditary persistence of fetal hemoglobin). Mutations clustering ~200 nucleotides upstream of the HBG transcriptional start sites either reduce binding of the LRF repressor or recruit the KLF1 activator. Here, we use base editing to generate a variety of mutations in the -200 region of the HBG promoters, including potent combinations of four to eight γ-globin-inducing mutations. Editing of patient hematopoietic stem/progenitor cells is safe, leads to fetal hemoglobin reactivation and rescues the pathological phenotype. Creation of a KLF1 activator binding site is the most potent strategy - even in long-term repopulating hematopoietic stem/progenitor cells. Compared with a Cas9-nuclease approach, base editing avoids the generation of insertions, deletions and large genomic rearrangements and results in higher γ-globin levels. Our results demonstrate that base editing of HBG promoters is a safe, universal strategy for treating ß-hemoglobinopathies.


Subject(s)
Anemia, Sickle Cell , beta-Thalassemia , Humans , Fetal Hemoglobin/genetics , Fetal Hemoglobin/metabolism , gamma-Globins/genetics , beta-Thalassemia/genetics , beta-Thalassemia/therapy , Anemia, Sickle Cell/genetics , Hematopoietic Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...