Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Reprod Immunol ; 92(1): e13895, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001587

ABSTRACT

PROBLEM: Preeclampsia (PE) is a hypertensive pregnancy disorder that is a leading cause of maternal and fetal morbidity and mortality characterized by maternal vascular dysfunction, oxidative stress, chronic immune activation, and excessive inflammation. No cure exists beyond delivery of the fetal-placental unit and the mechanisms driving pathophysiology are not fully understood. However, aberrant immune responses have been extensively characterized in clinical studies and shown to mediate PE pathophysiology in animal studies. One pathway that may mediate aberrant immune responses in PE is deficiencies in the IL-33 signaling pathway. In this study, we aim to investigate the impact of IL-33 signaling inhibition on cNK, TH17, and TReg populations, vascular function, and maternal blood pressure during pregnancy. METHOD OF STUDY: In this study, IL-33 signaling was inhibited using two different methods: intraperitoneal administration of recombinant ST2 (which acts as a decoy receptor for IL-33) and administration of a specific IL-33 neutralizing antibody. Maternal blood pressure, uterine artery resistance index, renal and placental oxidative stress, cNK, TH17, and TReg populations, various cytokines, and pre-proendothelin-1 levels were measured. RESULTS: IL-33 signaling inhibition increased maternal blood pressure, uterine artery resistance, placental and renal oxidative stress. IL-33 signaling inhibition also increased placental cNK and TH17 and renal TH17 cells while decreasing placental TReg populations. IL-33 neutralization increased circulating cNK and TH17s and decreased circulating TRegs in addition to increasing pre-proendothelin-1 levels. CONCLUSIONS: Data presented in this study demonstrate a role for IL-33 signaling in controlling vascular function and maternal blood pressure during pregnancy possibly by mediating innate and adaptive immune inflammatory responses, identifying the IL-33 signaling pathway as a potential therapeutic target for managing preeclampsia.


Subject(s)
Interleukin-33 , Pre-Eclampsia , Signal Transduction , Female , Pregnancy , Interleukin-33/metabolism , Pre-Eclampsia/immunology , Animals , Rats , Rats, Sprague-Dawley , Th17 Cells/immunology , Disease Models, Animal , T-Lymphocytes, Regulatory/immunology , Humans , Oxidative Stress , Placenta/immunology , Placenta/metabolism , Blood Pressure , Interleukin-1 Receptor-Like 1 Protein/metabolism
2.
Molecules ; 29(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38611825

ABSTRACT

Glucocorticoids (GCs) act through the glucocorticoid receptor (GR) and are commonly used as anti-inflammatory and immunosuppressant medications. Chronic GC use has been linked with unwanted complications such as steroid-induced diabetes mellitus (SIDM), although the mechanisms for these effects are not completely understood. Modification of six GC parent molecules with 2-mercaptobenzothiazole resulted in consistently less promoter activity in transcriptional activation assays using a 3xGRE reporter construct while constantly reducing inflammatory pathway activity. The most selective candidate, DX1, demonstrated a significant reduction (87%) in transactivation compared to commercially available dexamethasone. DX1 also maintained 90% of the anti-inflammatory potential of dexamethasone while simultaneously displaying a reduced toxicity profile. Additionally, two novel and highly potent compounds, DX4 and PN4, were developed and shown to elicit similar mRNA expression at attomolar concentrations that dexamethasone exhibits at nanomolar dosages. To further explain these results, Molecular Dynamic (MD) simulations were performed to examine structural changes in the ligand-binding domain of the glucocorticoid receptor in response to docking with the top ligands. Differing interactions with the transcriptional activation function 2 (AF-2) region of the GR may be responsible for lower transactivation capacity in DX1. DX4 and PN4 lose contact with Arg611 due to a key interaction changing from a stronger hydrophilic to a weaker hydrophobic one, which leads to the formation of an unoccupied channel at the location of the deacylcortivazol (DAC)-expanded binding pocket. These findings provide insights into the structure-function relationships important for regulating anti-inflammatory activity, which has implications for clinical utility.


Subject(s)
Glucocorticoids , Receptors, Glucocorticoid , Glucocorticoids/pharmacology , Ligands , Anti-Inflammatory Agents/pharmacology , Dexamethasone/pharmacology
3.
Diabetes Obes Metab ; 26(6): 2158-2166, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38433703

ABSTRACT

AIM: Type 1 diabetes results from autoimmune events influenced by environmental variables, including changes in diet. This study investigated how feeding refined versus unrefined (aka 'chow') diets affects the onset and progression of hyperglycaemia in non-obese diabetic (NOD) mice. METHODS: Female NOD mice were fed either unrefined diets or matched refined low- and high-fat diets. The onset of hyperglycaemia, glucose tolerance, food intake, energy expenditure, circulating insulin, liver gene expression and microbiome changes were measured for each dietary group. RESULTS: NOD mice consuming unrefined (chow) diets developed hyperglycaemia at similar frequencies. By contrast, mice consuming the defined high-fat diet had an accelerated onset of hyperglycaemia compared to the matched low-fat diet. There was no change in food intake, energy expenditure, or physical activity within each respective dietary group. Microbiome changes were driven by diet type, with chow diets clustering similarly, while refined low- and high-fat bacterial diversity also grouped closely. In the defined dietary cohort, liver gene expression changes in high-fat-fed mice were consistent with a greater frequency of hyperglycaemia and impaired glucose tolerance. CONCLUSION: Glucose intolerance is associated with an enhanced frequency of hyperglycaemia in female NOD mice fed a defined high-fat diet. Using an appropriate matched control diet is an essential experimental variable when studying changes in microbiome composition and diet as a modifier of disease risk.


Subject(s)
Diabetes Mellitus, Type 1 , Diet, High-Fat , Hyperglycemia , Mice, Inbred NOD , Animals , Diet, High-Fat/adverse effects , Female , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/microbiology , Mice , Hyperglycemia/etiology , Glucose Intolerance/etiology , Energy Metabolism , Liver/metabolism , Diet, Fat-Restricted , Insulin/metabolism , Insulin/blood , Blood Glucose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL