Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Infect Dis ; 229(4): 947-958, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38324758

ABSTRACT

BACKGROUND: Malarial infections are often missed by microscopy, and most parasite carriers are asymptomatic in low-endemicity settings. Whether parasite detectability and its ability to elicit symptoms change as transmission declines remains unclear. METHODS: We performed a prospective panel survey with repeated measurements on the same participants over 12 months to investigate whether Plasmodium vivax detectability by microscopy and risk of symptoms upon infection varied during a community-wide larviciding intervention in the Amazon basin of Brazil that markedly reduced vector density. We screened 1096 to 1400 residents in the intervention site for malaria by microscopy and quantitative TaqMan assays at baseline and twice during intervention. RESULTS: We found that more P vivax infections than expected from their parasite densities measured by TaqMan assays were missed by microscopy as transmission decreased. At lower transmission, study participants appeared to tolerate higher P vivax loads without developing symptoms. We hypothesize that changes in the ratio between circulating parasites and those that accumulate in the bone marrow and spleen, by avoiding peripheral blood microscopy detection, account for decreased parasite detectability and lower risk of symptoms under low transmission. CONCLUSIONS: P vivax infections are more likely to be subpatent and remain asymptomatic as malaria transmission decreases.


Subject(s)
Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Malaria, Vivax/parasitology , Brazil/epidemiology , Prospective Studies , Malaria, Falciparum/parasitology , Prevalence , Plasmodium vivax , Plasmodium falciparum
2.
Am J Trop Med Hyg ; 107(4_Suppl): 160-167, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36228907

ABSTRACT

Malaria remains endemic in 17 countries in the Americas, where 723,000 cases were reported in 2019. The majority (> 90%) of the regional malaria burden is found within the Amazon Basin, which includes nine countries and territories in South America. Locally generated evidence is critical to provide information to public health decision makers upon which the design of efficient and regionally directed malaria control and elimination programs can be built. Plasmodium vivax is the predominant malaria parasite in the Amazon Basin. This parasite species appears to be more resilient to malaria control strategies worldwide. Asymptomatic Plasmodium infections constitute a potentially infectious reservoir that is typically missed by routine microscopy-based surveillance and often remains untreated. The primary Amazonian malaria vector, Nyssorhynchus (formerly Anopheles) darlingi, has changed its behavior to feed and rest predominantly outdoors, reducing the efficiency of core vector control measures such as indoor residual spraying and distribution of long-lasting insecticide-treated bed nets. We review public health implications of recent field-based research carried out by the Amazonia International Center of Excellence in Malaria Research in Peru and Brazil. We discuss the relative role of traditional and novel tools and strategies for better malaria control and elimination across the Amazon, including improved diagnostic methods, new anti-relapse medicines, and biological larvicides, and emphasize the need to integrate research and public health policymaking.


Subject(s)
Anopheles , Malaria , Animals , Anopheles/parasitology , Brazil/epidemiology , Humans , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors/parasitology , Peru/epidemiology
3.
Parasit Vectors ; 14(1): 445, 2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34479606

ABSTRACT

BACKGROUND: Larvicides are typically applied to fixed and findable mosquito breeding sites, such as fish farming ponds used in commercial aquaculture, to kill immature forms and thereby reduce the size of adult malaria vector populations. However, there is little evidence suggesting that larviciding may suppress community-wide malaria transmission outside Africa. Here, we tested whether the biological larvicide VectoMax FG applied at monthly intervals to fish farming ponds can reduce malaria incidence in Amazonian Brazil. METHODS: This study was carried out in Vila Assis Brasil (VAB; population 1700), a peri-urban malaria hotspot in northwestern Brazil with a baseline annual parasite incidence of 553 malaria cases per 1000 inhabitants. The intervention consisted of monthly treatments with 20 kg/ha of VectoMax FG of all water-filled fish ponds in VAB (n ranging between 167 and 170) with a surface area between 20 and 8000 m2, using knapsack power mistblowers. We used single-group interrupted time-series analysis to compare monthly larval density measurements in fish ponds during a 14-month pre-intervention period (September 2017-October 2018), with measurements made during November 2018-October 2019 and shortly after the 12-month intervention (November 2019). We used interrupted time-series analysis with a comparison group to contrast the malaria incidence trends in VAB and nearby nonintervention localities before and during the intervention. RESULTS: Average larval densities decreased tenfold in treated fish farming ponds, from 0.467 (95% confidence interval [CI], 0.444-0.490) anopheline larvae per dip pre-intervention (September 2017-October 2018) to 0.046 (95% CI, 0.041-0.051) larvae per dip during (November 2018-October 2019) and shortly after the intervention (November 2019). Average malaria incidence rates decreased by 0.08 (95% CI, 0.04-0.11) cases per 100 person-months (P < 0.0001) during the intervention in VAB and remained nearly unchanged in comparison localities. We estimate that the intervention averted 24.5 (95% CI, 6.2-42.8) malaria cases in VAB between January and December 2019. CONCLUSIONS: Regular larviciding is associated with a dramatic decrease in larval density and a modest but significant decrease in community-wide malaria incidence. Larviciding may provide a valuable complementary vector control strategy in commercial aquaculture settings across the Amazon.


Subject(s)
Anopheles/drug effects , Aquaculture/methods , Insecticides/pharmacology , Larva/drug effects , Malaria/prevention & control , Mosquito Control/methods , Mosquito Vectors/drug effects , Animals , Anopheles/parasitology , Brazil/epidemiology , Fisheries , Humans , Incidence , Malaria/epidemiology , Malaria/transmission , Mosquito Vectors/parasitology , Ponds/parasitology , Time Factors
4.
J Med Entomol ; 57(3): 942-946, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31751448

ABSTRACT

Despite historical and contemporary evidence of its effectiveness, larval source management with insecticides remains little used by most malaria control programs worldwide. Here we show that environmentally safe biological larvicides under field conditions can significantly reduce anopheline larval density in fish farming ponds that have became major larval habitats across the Amazon Basin. Importantly, the primary local malaria vector, Anopheles darlingi Root (Diptera: Culicidae), feeds and rests predominantly outdoors, being little affected by interventions such as long-lasting insecticidal bed net distribution and indoor residual spraying. We found >95% reduction in late-instar density up to 7 d after the first application of VectoMax FG or VectoLex CG (both from Valent BioSciences), and up to 21 d after larvicide reapplication in fish ponds (n = 20) situated in the main residual malaria pocket of Brazil, irrespective of the formulation or dosage (10 or 20 kg/ha) used. These results are consistent with a substantial residual effect upon retreatment and support the use of biological larvicides to reduce the density of anopheline larvae in this and similar settings across the Amazon where larval habitats are readily identified and accessible.


Subject(s)
Anopheles , Insecticides , Mosquito Control , Mosquito Vectors , Pest Control, Biological , Animals , Anopheles/growth & development , Bacillaceae/chemistry , Bacillus thuringiensis/chemistry , Brazil , Larva/growth & development , Mosquito Vectors/growth & development
5.
PLoS Negl Trop Dis ; 10(12): e0005221, 2016 12.
Article in English | MEDLINE | ID: mdl-27941968

ABSTRACT

BACKGROUND: Malaria burden in Brazil has reached its lowest levels in 35 years and Plasmodium vivax now accounts for 84% of cases countrywide. Targeting residual malaria transmission entrenched in the Amazon is the next major challenge for ongoing elimination efforts. Better strategies are urgently needed to address the vast reservoir of asymptomatic P. vivax carriers in this and other areas approaching malaria elimination. METHODS: We evaluated a reactive case detection (RCD) strategy tailored for P. vivax transmission in farming settlements in the Amazon Basin of Brazil. Over six months, 41 cases detected by passive surveillance triggered four rounds of RCD (0, 30, 60, and 180 days after index case enrollment), using microscopy- and quantitative real-time polymerase chain reaction (qPCR)-based diagnosis, comprising subjects sharing the household (HH) with the index case (n = 163), those living in the 5 nearest HHs within 3 km (n = 878), and individuals from 5 randomly chosen control HHs located > 5 km away from index cases (n = 841). Correlates of infection were identified with mixed-effects logistic regression models. Molecular genotyping was used to infer local parasite transmission networks. PRINCIPAL FINDINGS/CONCLUSIONS: Subjects in index and neighbor HHs were significantly more likely to be parasitemic than control HH members, after adjusting for potential confounders, and together harbored > 90% of the P. vivax biomass in study subjects. Clustering patterns were temporally stable. Four rounds of microscopy-based RCD would identify only 49.5% of the infections diagnosed by qPCR, but 76.8% of the total parasite biomass circulating in the proximity of index HHs. However, control HHs accounted for 27.6% of qPCR-positive samples, 92.6% of them from asymptomatic carriers beyond the reach of RCD. Molecular genotyping revealed high P. vivax diversity, consistent with complex transmission networks and multiple sources of infection within clusters, potentially complicating malaria elimination efforts.


Subject(s)
Disease Eradication/methods , Malaria, Vivax/diagnosis , Malaria, Vivax/prevention & control , Adolescent , Adult , Aged , Aged, 80 and over , Asymptomatic Infections/epidemiology , Brazil/epidemiology , Child , Child, Preschool , Cost of Illness , Family Characteristics , Female , Genetic Variation , Humans , Infant , Malaria, Vivax/epidemiology , Malaria, Vivax/transmission , Male , Middle Aged , Plasmodium vivax/isolation & purification , Rural Health , Young Adult
6.
PLoS Negl Trop Dis ; 8(8): e3109, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25166263

ABSTRACT

BACKGROUND: New frontier settlements across the Amazon Basin pose a major challenge for malaria elimination in Brazil. Here we describe the epidemiology of malaria during the early phases of occupation of farming settlements in Remansinho area, Brazilian Amazonia. We examine the relative contribution of low-density and asymptomatic parasitemias to the overall Plasmodium vivax burden over a period of declining transmission and discuss potential hurdles for malaria elimination in Remansinho and similar settings. METHODS: Eight community-wide cross-sectional surveys, involving 584 subjects, were carried out in Remansinho over 3 years and complemented by active and passive surveillance of febrile illnesses between the surveys. We used quantitative PCR to detect low-density asexual parasitemias and gametocytemias missed by conventional microscopy. Mixed-effects multiple logistic regression models were used to characterize independent risk factors for P. vivax infection and disease. PRINCIPAL FINDINGS/CONCLUSIONS: P. vivax prevalence decreased from 23.8% (March-April 2010) to 3.0% (April-May 2013), with no P. falciparum infections diagnosed after March-April 2011. Although migrants from malaria-free areas were at increased risk of malaria, their odds of having P. vivax infection and disease decreased by 2-3% with each year of residence in Amazonia. Several findings indicate that low-density and asymptomatic P. vivax parasitemias may complicate residual malaria elimination in Remansinho: (a) the proportion of subpatent infections (i.e. missed by microscopy) increased from 43.8% to 73.1% as P. vivax transmission declined; (b) most (56.6%) P. vivax infections were asymptomatic and 32.8% of them were both subpatent and asymptomatic; (c) asymptomatic parasite carriers accounted for 54.4% of the total P. vivax biomass in the host population; (d) over 90% subpatent and asymptomatic P. vivax had PCR-detectable gametocytemias; and (e) few (17.0%) asymptomatic and subpatent P. vivax infections that were left untreated progressed to clinical disease over 6 weeks of follow-up and became detectable by routine malaria surveillance.


Subject(s)
Malaria, Vivax/epidemiology , Plasmodium vivax/genetics , Adult , Brazil/epidemiology , Female , Humans , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Male , Parasitemia/epidemiology , Parasitemia/parasitology , Polymerase Chain Reaction , Rural Population/statistics & numerical data , Young Adult
7.
Am J Trop Med Hyg ; 90(4): 670-81, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24515946

ABSTRACT

Toxocara spp. infection and the seroconversion rate in the Amazon have been poorly investigated. This study analyzed individual and household-level risk factors for the presence of IgG antibodies to Toxocara spp. in urban Amazonian children over a period of 7 years and evaluated the seroconversion rates over a 1-year follow-up. In children < 59 months of age, the overall prevalence rate was 28.08% in 2003 and 23.35% in 2010. The 2010-2011 seroconversion rates were 13.90% for children 6-59 months of age and 12.30% for children 84-143 months of age. Multilevel logistic regression analysis identified child age, previous wheezing, and current infection with hookworm as significant associated factors for Toxocara spp. seropositivity in 2003. In 2010, age, previous helminthiasis, and having a dog were associated with seropositivity, whereas having piped water inside the household was a protective factor. Control programs mainly need to target at-risk children, water quality control, and animal deworming strategies.


Subject(s)
Antibodies, Helminth/immunology , Feces/parasitology , Immunoglobulin G/immunology , Toxocara canis/immunology , Toxocariasis/epidemiology , Animals , Brazil/epidemiology , Child , Child, Preschool , Cohort Studies , Female , Humans , Infant , Male , Parasite Load , Prevalence , Toxocariasis/prevention & control , Urban Population/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL