Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Bioengineering (Basel) ; 10(4)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37106653

ABSTRACT

Chemical reaction networks can be utilised as basic components for nucleic acid feedback control systems' design for Synthetic Biology application. DNA hybridisation and programmed strand-displacement reactions are effective primitives for implementation. However, the experimental validation and scale-up of nucleic acid control systems are still considerably falling behind their theoretical designs. To aid with the progress heading into experimental implementations, we provide here chemical reaction networks that represent two fundamental classes of linear controllers: integral and static negative state feedback. We reduced the complexity of the networks by finding designs with fewer reactions and chemical species, to take account of the limits of current experimental capabilities and mitigate issues pertaining to crosstalk and leakage, along with toehold sequence design. The supplied control circuits are quintessential candidates for the first experimental validations of nucleic acid controllers, since they have a number of parameters, species, and reactions small enough for viable experimentation with current technical capabilities, but still represent challenging feedback control systems. They are also well suited to further theoretical analysis to verify results on the stability, performance, and robustness of this important new class of control systems.

2.
PLoS One ; 17(10): e0273261, 2022.
Article in English | MEDLINE | ID: mdl-36260640

ABSTRACT

Hand-eye calibration is an important step in controlling a vision-guided robot in applications like part assembly, bin picking and inspection operations etc. Many methods for estimating hand-eye transformations have been proposed in literature with varying degrees of complexity and accuracy. However, the success of a vision-guided application is highly impacted by the accuracy the hand-eye calibration of the vision system with the robot. The level of this accuracy depends on several factors such as rotation and translation noise, rotation and translation motion range that must be considered during calibration. Previous studies and benchmarking of the proposed algorithms have largely been focused on the combined effect of rotation and translation noise. This study provides insight on the impact of rotation and translation noise acting in isolation on the hand-eye calibration accuracy. This deviates from the most common method of assessing hand-eye calibration accuracy based on pose noise (combined rotation and translation noise). We also evaluated the impact of the robot motion range used during the hand-eye calibration operation which is rarely considered. We provide quantitative evaluation of our study using six commonly used algorithms from an implementation perspective. We comparatively analyse the performance of these algorithms through simulation case studies and experimental validation using the Universal Robot's UR5e physical robots. Our results show that these different algorithms perform differently when the noise conditions vary rather than following a general trend. For example, the simultaneous methods are more resistant to rotation noise, whereas the separate methods are better at dealing with translation noise. Additionally, while increasing the robot rotation motion span during calibration enhances the accuracy of the separate methods, it has a negative effect on the simultaneous methods. Conversely, increasing the translation motion range improves the accuracy of simultaneous methods but degrades the accuracy of the separate methods. These findings suggest that those conditions should be considered when benchmarking algorithms or performing a calibration process for enhanced accuracy.


Subject(s)
Robotics , Calibration , Robotics/methods , Hand , Algorithms , Rotation
3.
Biosystems ; 219: 104732, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35781035

ABSTRACT

Recent advances in synthetic biology have enabled the design of genetic feedback control circuits that could be implemented to build resilient plants against pathogen attacks. To facilitate the proper design of these genetic feedback control circuits, an accurate model that is able to capture the vital dynamical behaviour of the pathogen-infected plant is required. In this study, using a data-driven modelling approach, we develop and compare four dynamical models (i.e. linear, Michaelis-Menten with Hill coefficient (Hill Function), standard S-System and extended S-System) of a pathogen-infected plant gene regulatory network (GRN). These models are then assessed across several criteria, i.e. ease of identifying the type of gene regulation, the predictive capability, Akaike Information Criterion (AIC) and the robustness to parameter uncertainty to determine its viability of balancing between biological complexity and accuracy when modelling the pathogen-infected plant GRN. Using our defined ranking score, we obtain the following insights to the modelling of GRN. Our analyses show that despite commonly used and provide biological relevance, the Hill Function model ranks the lowest while the extended S-System model ranks highest in the overall comparison. Interestingly, the performance of the linear model is more consistent throughout the comparison, making it the preferred model for this pathogen-infected plant GRN when considering data-driven modelling approach.


Subject(s)
Gene Regulatory Networks , Synthetic Biology , Feedback , Gene Expression Regulation , Gene Regulatory Networks/genetics , Linear Models
4.
ACS Synth Biol ; 11(7): 2417-2428, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35729788

ABSTRACT

Mathematical models are powerful tools in guiding the construction of synthetic biological circuits, given their capability of accurately capturing and predicting circuit dynamics. Recent innovations in RNA technology have enabled the development of a variety of new tools for regulating gene expression at both the transcription and translation levels. However, the effects of different regulation levels on the circuit dynamics remain largely unexplored. In this study, we focus on the type 1 incoherent feed-forward loop (I1-FFL) gene circuit with four different variations (TX, TL, HY-1, HY-2), to investigate how regulation at the transcription and translation levels affect the circuit dynamics. We develop a mechanistic model for each of the four circuits and deploy sensitivity analysis to investigate the circuits' dynamics in terms of pulse generation. Based on the analysis, we observe that the repression regulation mechanism dominates the characteristics of the pulse as compared to the activation regulation mechanism and find that the I1-FFL with transcription repression has a higher chance of generating a pulse meeting the desired criteria. The experimental results in Escherichia coli also confirm our findings from the computational analysis. We expect our findings to facilitate future experimental construction of gene circuits with insights on the selection of appropriate transcription and translation regulation tools.


Subject(s)
Escherichia coli , Gene Regulatory Networks , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Regulatory Networks/genetics , RNA/metabolism
5.
In Silico Plants ; 4(1): diac001, 2022.
Article in English | MEDLINE | ID: mdl-35369361

ABSTRACT

To meet the ever-increasing global food demand, the food production rate needs to be increased significantly in the near future. Speed breeding is considered as a promising agricultural technology solution to achieve the zero-hunger vision as specified in the United Nations Sustainable Development Goal 2. In speed breeding, the photoperiod of the artificial light has been manipulated to enhance crop productivity. In particular, regulating the photoperiod of different light qualities rather than solely white light can further improve speed breading. However, identifying the optimal light quality and the associated photoperiod simultaneously remains a challenging open problem due to complex interactions between multiple photoreceptors and proteins controlling plant growth. To tackle this, we develop a first comprehensive model describing the profound effect of multiple light qualities with different photoperiods on plant growth (i.e. hypocotyl growth). The model predicts that hypocotyls elongated more under red light compared to both red and blue light. Drawing similar findings from previous related studies, we propose that this might result from the competitive binding of red and blue light receptors, primarily Phytochrome B (phyB) and Cryptochrome 1 (cry1) for the core photomorphogenic regulator, CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). This prediction is validated through an experimental study on Arabidopsis thaliana. Our work proposes a potential molecular mechanism underlying plant growth under different light qualities and ultimately suggests an optimal breeding protocol that takes into account light quality.

6.
NPJ Syst Biol Appl ; 8(1): 7, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35169147

ABSTRACT

The circadian system-an organism's built-in biological clock-is responsible for orchestrating biological processes to adapt to diurnal and seasonal variations. Perturbations to the circadian system (e.g., pathogen attack, sudden environmental change) often result in pathophysiological responses (e.g., jetlag in humans, stunted growth in plants, etc.) In view of this, synthetic biologists are progressively adapting the idea of employing synthetic feedback control circuits to alleviate the effects of perturbations on circadian systems. To facilitate the design of such controllers, suitable models are required. Here, we extend our recently developed model for the plant circadian clock-termed the extended S-System model-to model circadian systems across different kingdoms of life. We then use this modeling strategy to develop a design framework, based on an antithetic integral feedback (AIF) controller, to restore a gene's circadian profile when it is subject to loss-of-function due to external perturbations. The use of the AIF controller is motivated by its recent successful experimental implementation. Our findings provide circadian biologists with a systematic and general modeling and design approach for implementing synthetic feedback control of circadian systems.


Subject(s)
Biological Phenomena , Circadian Clocks , Circadian Clocks/genetics , Feedback , Humans , Models, Biological
7.
PLoS One ; 16(12): e0261281, 2021.
Article in English | MEDLINE | ID: mdl-34898651

ABSTRACT

Smart greenhouse farming has emerged as one of the solutions to global food security, where farming productivity can be managed and improved in an automated manner. While it is known that plant development is highly dependent on the quantity and quality of light exposure, the specific impact of the different light properties is yet to be fully understood. In this study, using the model plant Arabidopsis, we systematically investigate how six different light properties (i.e., photoperiod, light offset, intensity, phase of dawn, duration of twilight and period) would affect plant development i.e., flowering time and hypocotyl (seedling stem) elongation using an established mathematical model of the plant circadian system relating light input to flowering time and hypocotyl elongation outputs for smart greenhouse application. We vary each of the light properties individually and then collectively to understand their effect on plant development. Our analyses show in comparison to the nominal value, the photoperiod of 18 hours, period of 24 hours, no light offset, phase of dawn of 0 hour, duration of twilight of 0.05 hour and a reduced light intensity of 1% are able to improve by at least 30% in days to flower (from 32.52 days to 20.61 days) and hypocotyl length (from 1.90 mm to 1.19mm) with the added benefit of reducing energy consumption by at least 15% (from 4.27 MWh/year to 3.62 MWh/year). These findings could provide beneficial solutions to the smart greenhouse farming industries in terms of achieving enhanced productivity while consuming less energy.


Subject(s)
Agriculture/methods , Lighting/methods , Plant Development/physiology , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/radiation effects , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/radiation effects , Automation/methods , Circadian Clocks/genetics , Circadian Rhythm/genetics , Flowers/metabolism , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Light , Seedlings/metabolism
8.
Biomolecules ; 11(8)2021 08 10.
Article in English | MEDLINE | ID: mdl-34439849

ABSTRACT

RNA-based regulators are promising tools for building synthetic biological systems that provide a powerful platform for achieving a complex regulation of transcription and translation. Recently, de novo-designed synthetic RNA regulators, such as the small transcriptional activating RNA (STAR), toehold switch (THS), and three-way junction (3WJ) repressor, have been utilized to construct RNA-based synthetic gene circuits in living cells. In this work, we utilized these regulators to construct type 1 incoherent feed-forward loop (IFFL) circuits in vivo and explored their dynamic behaviors. A combination of a STAR and 3WJ repressor was used to construct an RNA-only IFFL circuit. However, due to the fast kinetics of RNA-RNA interactions, there was no significant timescale difference between the direct activation and the indirect inhibition, that no pulse was observed in the experiments. These findings were confirmed with mechanistic modeling and simulation results for a wider range of conditions. To increase delay in the inhibition pathway, we introduced a protein synthesis process to the circuit and designed an RNA-protein hybrid IFFL circuit using THS and TetR protein. Simulation results indicated that pulse generation could be achieved with this RNA-protein hybrid model, and this was further verified with experimental realization in E. coli. Our findings demonstrate that while RNA-based regulators excel in speed as compared to protein-based regulators, the fast reaction kinetics of RNA-based regulators could also undermine the functionality of a circuit (e.g., lack of significant timescale difference). The agreement between experiments and simulations suggests that the mechanistic modeling can help debug issues and validate the hypothesis in designing a new circuit. Moreover, the applicability of the kinetic parameters extracted from the RNA-only circuit to the RNA-protein hybrid circuit also indicates the modularity of RNA-based regulators when used in a different context. We anticipate the findings of this work to guide the future design of gene circuits that rely heavily on the dynamics of RNA-based regulators, in terms of both modeling and experimental realization.


Subject(s)
Escherichia coli/genetics , Proteins/metabolism , RNA/metabolism , Synthetic Biology/methods , Transcriptional Activation , Gene Regulatory Networks
9.
PLoS Comput Biol ; 16(3): e1007671, 2020 03.
Article in English | MEDLINE | ID: mdl-32176683

ABSTRACT

The circadian clock orchestrates biological processes so that they occur at specific times of the day, thereby facilitating adaptation to diurnal and seasonal environmental changes. In plants, mathematical modelling has been comprehensively integrated with experimental studies to gain a better mechanistic understanding of the complex genetic regulatory network comprising the clock. However, with an increasing number of circadian genes being discovered, there is a pressing need for methods facilitating the expansion of computational models to incorporate these newly-discovered components. Conventionally, plant clock models have comprised differential equation systems based on Michaelis-Menten kinetics. However, the difficulties associated with modifying interactions using this approach-and the concomitant problem of robustly identifying regulation types-has contributed to a complexity bottleneck, with quantitative fits to experimental data rapidly becoming computationally intractable for models possessing more than ≈50 parameters. Here, we address these issues by constructing the first plant clock models based on the S-System formalism originally developed by Savageau for analysing biochemical networks. We show that despite its relative simplicity, this approach yields clock models with comparable accuracy to the conventional Michaelis-Menten formalism. The S-System formulation also confers several key advantages in terms of model construction and expansion. In particular, it simplifies the inclusion of new interactions, whilst also facilitating the modification of regulation types, thereby making it well-suited to network inference. Furthermore, S-System models mitigate the issue of parameter identifiability. Finally, by applying linear systems theory to the models considered, we provide some justification for the increased use of aggregated protein equations in recent plant clock modelling, replacing the separate cytoplasmic/nuclear protein compartments that were characteristic of the earlier models. We conclude that as well as providing a simplified framework for model development, the S-System formalism also possesses significant potential as a robust modelling method for designing synthetic gene circuits.


Subject(s)
Circadian Clocks , Circadian Rhythm Signaling Peptides and Proteins , Models, Biological , Plant Physiological Phenomena/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/genetics , Circadian Clocks/physiology , Circadian Rhythm Signaling Peptides and Proteins/genetics , Circadian Rhythm Signaling Peptides and Proteins/metabolism , Computational Biology , Gene Regulatory Networks/genetics , Gene Regulatory Networks/physiology
10.
Article in English | MEDLINE | ID: mdl-29994499

ABSTRACT

Synthetic Biologists are increasingly interested in the idea of using synthetic feedback control circuits for the mitigation of perturbations to gene regulatory networks that may arise due to disease and/or environmental disturbances. Models employing Michaelis-Menten kinetics with Hill-type nonlinearities are typically used to represent the dynamics of gene regulatory networks. Here, we identify some fundamental problems with such models from the point of view of control system design, and argue that an alternative formalism, based on so-called S-System models, is more suitable. Using tools from system identification, we show how to build S-System models that capture the key dynamics of an example gene regulatory network, and design a genetic feedback controller with the objective of rejecting an external perturbation. Using a sine sweeping method, we show how the S-System model can be approximated by a linear transfer function and, based on this transfer function, we design our controller. Simulation results using the full nonlinear S-System model of the network show that the synthetic control circuit is able to mitigate the effect of external perturbations. Our study is the first to highlight the usefulness of the S-System modelling formalism for the design of synthetic control circuits for gene regulatory networks.


Subject(s)
Gene Regulatory Networks/genetics , Models, Genetic , Synthetic Biology/methods , Systems Biology/methods , Computer Simulation , Escherichia coli/genetics , Feedback , Saccharomyces cerevisiae/genetics
11.
Commun Biol ; 1: 207, 2018.
Article in English | MEDLINE | ID: mdl-30511021

ABSTRACT

Circadian clocks play a pivotal role in orchestrating numerous physiological and developmental events. Waveform shapes of the oscillations of protein abundances can be informative about the underlying biochemical processes of circadian clocks. We derive a mathematical framework where waveforms do reveal hidden biochemical mechanisms of circadian timekeeping. We find that the cost of synthesizing proteins with particular waveforms can be substantially reduced by rhythmic protein half-lives over time, as supported by previous plant and mammalian data, as well as our own seedling experiment. We also find that previously enigmatic, cyclic expression of positive arm components within the mammalian and insect clocks allows both a broad range of peak time differences between protein waveforms and the symmetries of the waveforms about the peak times. Such various peak-time differences may facilitate tissue-specific or developmental stage-specific multicellular processes. Our waveform-guided approach can be extended to various biological oscillators, including cell-cycle and synthetic genetic oscillators.

12.
ACS Synth Biol ; 7(6): 1553-1564, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29746091

ABSTRACT

Crop disease leads to significant waste worldwide, both pre- and postharvest, with subsequent economic and sustainability consequences. Disease outcome is determined both by the plants' response to the pathogen and by the ability of the pathogen to suppress defense responses and manipulate the plant to enhance colonization. The defense response of a plant is characterized by significant transcriptional reprogramming mediated by underlying gene regulatory networks, and components of these networks are often targeted by attacking pathogens. Here, using gene expression data from Botrytis cinerea-infected Arabidopsis plants, we develop a systematic approach for mitigating the effects of pathogen-induced network perturbations, using the tools of synthetic biology. We employ network inference and system identification techniques to build an accurate model of an Arabidopsis defense subnetwork that contains key genes determining susceptibility of the plant to the pathogen attack. Once validated against time-series data, we use this model to design and test perturbation mitigation strategies based on the use of genetic feedback control. We show how a synthetic feedback controller can be designed to attenuate the effect of external perturbations on the transcription factor CHE in our subnetwork. We investigate and compare two approaches for implementing such a controller biologically-direct implementation of the genetic feedback controller, and rewiring the regulatory regions of multiple genes-to achieve the network motif required to implement the controller. Our results highlight the potential of combining feedback control theory with synthetic biology for engineering plants with enhanced resilience to environmental stress.


Subject(s)
Arabidopsis/physiology , Feedback, Physiological , Plants, Genetically Modified , Synthetic Biology/methods , Arabidopsis/genetics , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , Botrytis/pathogenicity , Disease Resistance/physiology , Gene Expression Regulation, Plant , Gene Regulatory Networks , Host-Pathogen Interactions/physiology , Interrupted Time Series Analysis , Models, Biological , Repressor Proteins/genetics , Reproducibility of Results
13.
Sci Rep ; 8(1): 3498, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472589

ABSTRACT

Measurement techniques in biology are now able to provide data on the trajectories of multiple individual molecules simultaneously, motivating the development of techniques for the stochastic spatio-temporal modelling of biomolecular networks. However, standard approaches based on solving stochastic reaction-diffusion equations are computationally intractable for large-scale networks. We present a novel method for modeling stochastic and spatial dynamics in biomolecular networks using a simple form of the Langevin equation with noisy kinetic constants. Spatial heterogeneity in molecular interactions is decoupled into a set of compartments, where the distribution of molecules in each compartment is idealised as being uniform. The reactions in the network are then modelled by Langevin equations with correcting terms, that account for differences between spatially uniform and spatially non-uniform distributions, and that can be readily estimated from available experimental data. The accuracy and extreme computational efficiency of the approach is demonstrated on a model of the epidermal growth factor receptor network in the human mammary epithelial cell.


Subject(s)
Gene Regulatory Networks/genetics , Models, Biological , Stochastic Processes , Computer Simulation , ErbB Receptors/genetics , Humans , Kinetics , Signal Transduction/genetics
14.
Comput Chem Eng ; 99: 145-157, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-28392606

ABSTRACT

Feedback control is widely used in chemical engineering to improve the performance and robustness of chemical processes. Feedback controllers require a 'subtractor' that is able to compute the error between the process output and the reference signal. In the case of embedded biomolecular control circuits, subtractors designed using standard chemical reaction network theory can only realise one-sided subtraction, rendering standard controller design approaches inadequate. Here, we show how a biomolecular controller that allows tracking of required changes in the outputs of enzymatic reaction processes can be designed and implemented within the framework of chemical reaction network theory. The controller architecture employs an inversion-based feedforward controller that compensates for the limitations of the one-sided subtractor that generates the error signals for a feedback controller. The proposed approach requires significantly fewer chemical reactions to implement than alternative designs, and should have wide applicability throughout the fields of synthetic biology and biological engineering.

15.
J Biol Eng ; 10: 15, 2016.
Article in English | MEDLINE | ID: mdl-27872658

ABSTRACT

BACKGROUND: Cycles of covalent modification are ubiquitous motifs in cellular signalling. Although such signalling cycles are implemented via a highly concise set of chemical reactions, they have been shown to be capable of producing multiple distinct input-output mapping behaviours - ultrasensitive, hyperbolic, signal-transducing and threshold-hyperbolic. RESULTS: In this paper, we show how the set of chemical reactions underlying covalent modification cycles can be exploited for the design of synthetic analog biomolecular circuitry. We show that biomolecular circuits based on the dynamics of covalent modification cycles allow (a) the computation of nonlinear operators using far fewer chemical reactions than purely abstract designs based on chemical reaction network theory, and (b) the design of nonlinear feedback controllers with strong performance and robustness properties. CONCLUSIONS: Our designs provide a more efficient route for translation of complex circuits and systems from chemical reactions to DNA strand displacement-based chemistry, thus facilitating their experimental implementation in future Synthetic Biology applications.

16.
Nat Commun ; 7: 11923, 2016 06 16.
Article in English | MEDLINE | ID: mdl-27305949

ABSTRACT

The byssal threads of the fan shell Atrina pectinata are non-living functional materials intimately associated with living tissue, which provide an intriguing paradigm of bionic interface for robust load-bearing device. An interfacial load-bearing protein (A. pectinata foot protein-1, apfp-1) with L-3,4-dihydroxyphenylalanine (DOPA)-containing and mannose-binding domains has been characterized from Atrina's foot. apfp-1 was localized at the interface between stiff byssus and the soft tissue by immunochemical staining and confocal Raman imaging, implying that apfp-1 is an interfacial linker between the byssus and soft tissue, that is, the DOPA-containing domain interacts with itself and other byssal proteins via Fe3(+)-DOPA complexes, and the mannose-binding domain interacts with the soft tissue and cell membranes. Both DOPA- and sugar-mediated bindings are reversible and robust under wet conditions. This work shows the combination of DOPA and sugar chemistry at asymmetric interfaces is unprecedented and highly relevant to bionic interface design for tissue engineering and bionic devices.

17.
PLoS Comput Biol ; 12(2): e1004748, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26828650

ABSTRACT

A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.


Subject(s)
Arabidopsis/genetics , Circadian Clocks/genetics , Gene Regulatory Networks/genetics , Genes, Plant/genetics , Algorithms , Arabidopsis/physiology , Circadian Clocks/physiology , Computational Biology , Models, Genetic
18.
Biomacromolecules ; 17(3): 946-53, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26894593

ABSTRACT

Recent works on mussel adhesion have identified a load bearing matrix protein (PTMP1) containing von Willebrand factor (vWF) with collagen binding capability that contributes to the mussel holdfast by manipulating mussel collagens. Using a surface forces apparatus, we investigate for the first time, the nanomechanical properties of vWF-collagen interaction using homologous proteins of mussel byssus, PTMP1 and preCollagens (preCols), as collagen. Mimicking conditions similar to mussel byssus secretion (pH < 5.0) and seawater condition (pH 8.0), PTMP1 and preCol interact weakly in the "positioning" phase based on vWF-collagen binding and strengthen in "locked" phase due to the combined effects of electrostatic attraction, metal binding, and mechanical shearing. The progressive enhancement of binding between PTMP1 with porcine collagen under the aforementioned conditions is also observed. The binding mechanisms of PTMP1-preCols provide insights into the molecular interaction of the mammalian collagen system and the development of an artificial extracellular matrix based on collagens.


Subject(s)
Cell Adhesion , Collagen/chemistry , von Willebrand Factor/chemistry , Animals , Collagen/metabolism , Mytilus , Nanostructures/chemistry , Protein Binding , Surface Properties , Swine , von Willebrand Factor/metabolism
19.
BMC Biotechnol ; 16: 16, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26879700

ABSTRACT

BACKGROUND: von Willebrand factor (VWF) is a key load bearing domain for mamalian cell adhesion by binding various macromolecular ligands in extracellular matrix such as, collagens, elastin, and glycosaminoglycans. Interestingly, vWF like domains are also commonly found in load bearing systems of marine organisms such as in underwater adhesive of mussel and sea star, and nacre of marine abalone, and play a critical load bearing function. Recently, Proximal Thread Matrix Protein1 (PTMP1) in mussel composed of two vWF type A like domains has characterized and it is known to bind both mussel collagens and mammalian collagens. RESULTS: Here, we cloned and mass produced a recombinant PTMP1 from E. coli system after switching all the minor codons to the major codons of E. coli. Recombinant PTMP1 has an ability to enhance mouse osteoblast cell adhesion, spreading, and cell proliferation. In addition, PTMP1 showed vWF-like properties as promoting collagen expression as well as binding to collagen type I, subsequently enhanced cell viability. Consequently, we found that recombinant PTMP1 acts as a vWF domain by mediating cell adhesion, spreading, proliferation, and formation of actin cytoskeleton. CONCLUSIONS: This study suggests that both mammalian cell adhesion and marine underwater adhesion exploits a strong vWF-collagen interaction for successful wet adhesion. In addition, vWF like domains containing proteins including PTMP1 have a great potential for tissue engineering and the development of biomedical adhesives as a component for extra-cellular matrix.


Subject(s)
Bivalvia/genetics , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Recombinant Proteins/pharmacology , Animals , Cell Line , Cell Survival , Collagen , Escherichia coli/genetics , Mice , Protein Structure, Tertiary/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , von Willebrand Factor/genetics
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 1455-1458, 2016 Aug.
Article in English | MEDLINE | ID: mdl-28268600

ABSTRACT

The use of abstract chemical reaction networks (CRNs) as a modelling and design framework for the implementation of computing and control circuits using enzyme-free, entropy driven DNA strand displacement (DSD) reactions is starting to garner widespread attention in the area of synthetic biology. Previous work in this area has demonstrated the theoretical plausibility of using this approach to design biomolecular feedback control systems based on classical proportional-integral (PI) controllers, which may be constructed from CRNs implementing gain, summation and integrator operators. Here, we propose an alternative design approach that utilises the abstract chemical reactions involved in cellular signalling cycles to implement a biomolecular controller - termed a signalling-cycle (SC) controller. We compare the performance of the PI and SC controllers in closed-loop with a nonlinear second-order chemical process. Our results show that the SC controller outperforms the PI controller in terms of both performance and robustness, and also requires fewer abstract chemical reactions to implement, highlighting its potential usefulness in the construction of biomolecular control circuits.


Subject(s)
DNA/genetics , Feedback , Synthetic Biology
SELECTION OF CITATIONS
SEARCH DETAIL
...