Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 18(1): 993, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29281972

ABSTRACT

BACKGROUND: Although Mycoplasma genitalium is a common sexually transmitted pathogen causing clinically distinct diseases both in male and females, few genomes have been sequenced up to now, due mainly to its fastidious nature and slow growth. Hence, we lack a robust phylogenetic framework to provide insights into the population structure of the species. Currently our understanding of the nature and diversity of M. genitalium relies on molecular tests targeting specific genes or regions of the genome and knowledge is limited by a general under-testing internationally. This is set against a background of drug resistance whereby M. genitalium has developed resistance to mainly all therapeutic antimicrobials. RESULTS: We sequenced 28 genomes of Mycoplasma genitalium from temporally (1980-2010) and geographically (Europe, Japan, Australia) diverse sources. All the strain showed essentially the same genomic content without any accessory regions found. However, we identified extensive recombination across their genomes with a total of 25 regions showing heightened levels of SNP density. These regions include the MgPar loci, associated with host interactions, as well as other genes that could also be involved in this role. Using these data, we generated a robust phylogeny which shows that there are two main clades with differing degrees of genomic variability. SNPs found in region V of 23S rRNA and parC were consistent with azithromycin/erythromycin and fluoroquinolone resistances, respectively, and with their phenotypic MIC data. CONCLUSIONS: The sequence data here generated is essential for designing rational approaches to type and track Mycoplasma genitalium as antibiotic resistance increases. It represents a first approach to its population genetics to better appreciate the role of this organism as a sexually transmitted pathogen.


Subject(s)
Genome, Bacterial , Mycoplasma genitalium/genetics , Recombination, Genetic , Drug Resistance, Bacterial , Genes, Bacterial , Genetic Variation , Mycoplasma genitalium/classification , Mycoplasma genitalium/drug effects , Mycoplasma genitalium/isolation & purification , Phylogeny , Sequence Analysis, DNA
2.
Sci Rep ; 7: 42483, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28198411

ABSTRACT

Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 µg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 µg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial , Gene Expression Regulation, Bacterial , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/genetics , Chromosome Mapping , DNA Transposable Elements , Gene Library , Genes, Bacterial , Genome, Bacterial , Humans , Microbial Sensitivity Tests , Mutagenesis, Insertional , Mutation , Whole Genome Sequencing
3.
Vaccine ; 33(26): 2978-83, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25936664

ABSTRACT

Shigellosis or bacillary dysentery is endemic worldwide and is a significant cause of death in children less than five years of age in developing countries. There are no licensed Shigella vaccines and glycoconjugates are among the leading candidate vaccines against shigellosis today. We used whole genome sequence analysis (WGA) to find out whether immunization, with an investigational Shigella sonnei glycoconjugate, could induce selective pressure leading to changes in the genome of S. sonnei. An outbreak of culture-proven S. sonnei shigellosis which occurred immediately after vaccination in one of the cohorts of volunteers participating in a phase III trial of the vaccine in Israel created a unique condition in which the epidemic agent "co-existed" with the developing immune responses induced by the vaccine and natural infection among vaccinees who developed S. sonnei shigellosis. By comparing the whole genomes of S. sonnei isolated from vaccinees and from volunteers in the control group, we show at a very high sensitivity that a potent S. sonnei glycoconjugate that conferred 74% protective efficacy against the homologous disease did not induce changes in the genome of S. sonnei and in particular on the O-antigen gene cluster.


Subject(s)
Genome, Bacterial , Glycoconjugates/immunology , O Antigens/genetics , Shigella Vaccines , Shigella sonnei/genetics , Shigella sonnei/immunology , Clinical Trials, Phase III as Topic , Dysentery, Bacillary/epidemiology , Dysentery, Bacillary/prevention & control , Glycoconjugates/administration & dosage , Humans , Israel/epidemiology , Mutation , Phylogeny , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Shigella Vaccines/administration & dosage , Shigella Vaccines/immunology , Shigella sonnei/isolation & purification , Vaccination
4.
BMC Genomics ; 15: 438, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24907032

ABSTRACT

BACKGROUND: Shigella flexneri is an important human pathogen that has to adapt to the anaerobic environment in the gastrointestinal tract to cause dysentery. To define the influence of anaerobiosis on the virulence of Shigella, we performed deep RNA sequencing to identify transcriptomic differences that are induced by anaerobiosis and modulated by the anaerobic Fumarate and Nitrate Reduction regulator, FNR. RESULTS: We found that 528 chromosomal genes were differentially expressed in response to anaerobic conditions; of these, 228 genes were also influenced by FNR. Genes that were up-regulated in anaerobic conditions are involved in carbon transport and metabolism (e.g. ptsG, manX, murQ, cysP, cra), DNA topology and regulation (e.g. ygiP, stpA, hns), host interactions (e.g. yciD, nmpC, slyB, gapA, shf, msbB) and survival within the gastrointestinal tract (e.g. shiA, ospI, adiY, cysP). Interestingly, there was a marked effect of available oxygen on genes involved in Type III secretion system (T3SS), which is required for host cell invasion and pathogenesis. These genes, located on the large Shigella virulence plasmid, were down regulated in anaerobiosis in an FNR-dependent manner. We also confirmed anaerobic induction of csrB and csrC small RNAs in an FNR-independent manner. CONCLUSIONS: Anaerobiosis promotes survival and adaption strategies of Shigella, while modulating virulence plasmid genes involved in T3SS-mediated host cell invasion. The influence of FNR on this process is more extensive than previously appreciated, although aside from the virulence plasmid, this transcriptional regulator does not govern expression of genes on other horizontally acquired sequences on the chromosome such as pathogenicity islands.


Subject(s)
Bacterial Proteins/genetics , RNA/metabolism , Shigella flexneri/genetics , Anaerobiosis , Chromosomes, Bacterial/genetics , Escherichia coli/genetics , Oligonucleotide Array Sequence Analysis , RNA/chemistry , Sequence Analysis, RNA , Virulence/genetics
5.
PLoS Negl Trop Dis ; 7(11): e2557, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24244782

ABSTRACT

BACKGROUND: Invasive Non-typhoidal Salmonella (iNTS) are an important cause of bacteraemia in children and HIV-infected adults in sub-Saharan Africa. Previous research has shown that iNTS strains exhibit a pattern of gene loss that resembles that of host adapted serovars such as Salmonella Typhi and Paratyphi A. Salmonella enterica serovar Bovismorbificans was a common serovar in Malawi between 1997 and 2004. METHODOLOGY: We sequenced the genomes of 14 Malawian bacteraemia and four veterinary isolates from the UK, to identify genomic variations and signs of host adaptation in the Malawian strains. PRINCIPAL FINDINGS: Whole genome phylogeny of invasive and veterinary S. Bovismorbificans isolates showed that the isolates are highly related, belonging to the most common international S. Bovismorbificans Sequence Type, ST142, in contrast to the findings for S. Typhimurium, where a distinct Sequence Type, ST313, is associated with invasive disease in sub-Saharan Africa. Although genome degradation through pseudogene formation was observed in ST142 isolates, there were no clear overlaps with the patterns of gene loss seen in iNTS ST313 isolates previously described from Malawi, and no clear distinction between S. Bovismorbificans isolates from Malawi and the UK. The only defining differences between S. Bovismorbificans bacteraemia and veterinary isolates were prophage-related regions and the carriage of a S. Bovismorbificans virulence plasmid (pVIRBov). CONCLUSIONS: iNTS S. Bovismorbificans isolates, unlike iNTS S. Typhiumrium isolates, are only distinguished from those circulating elsewhere by differences in the mobile genome. It is likely that these strains have entered a susceptible population and are able to take advantage of this niche. There are tentative signs of convergent evolution to a more human adapted iNTS variant. Considering its importance in causing disease in this region, S. Bovismorbificans may be at the beginning of this process, providing a reference against which to compare changes that may become fixed in future lineages in sub-Saharan Africa.


Subject(s)
Genome, Bacterial/genetics , Salmonella enterica/genetics , Salmonella enterica/pathogenicity , Humans , Malawi , Phylogeny , Salmonella Infections , Salmonella enterica/classification
6.
PLoS Genet ; 9(10): e1003868, 2013.
Article in English | MEDLINE | ID: mdl-24130509

ABSTRACT

Streptococcus pneumoniae of serotype 3 possess a mucoid capsule and cause disease associated with high mortality rates relative to other pneumococci. Phylogenetic analysis of a complete reference genome and 81 draft sequences from clonal complex 180, the predominant serotype 3 clone in much of the world, found most sampled isolates belonged to a clade affected by few diversifying recombinations. However, other isolates indicate significant genetic variation has accumulated over the clonal complex's entire history. Two closely related genomes, one from the blood and another from the cerebrospinal fluid, were obtained from a patient with meningitis. The pair differed in their behaviour in a mouse model of disease and in their susceptibility to antimicrobials, with at least some of these changes attributable to a mutation that up-regulated the patAB efflux pump. This indicates clinically important phenotypic variation can accumulate rapidly through small alterations to the genotype.


Subject(s)
Genome, Bacterial , Mutation , Phylogeny , Streptococcus pneumoniae/genetics , Animals , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Meningitis/blood , Meningitis/cerebrospinal fluid , Meningitis/microbiology , Mice , Serotyping , Streptococcus pneumoniae/pathogenicity
7.
J Bacteriol ; 194(6): 1494-504, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22247511

ABSTRACT

Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.


Subject(s)
Bacterial Proteins/genetics , Enterobacteriaceae/genetics , Enterobacteriaceae/pathogenicity , Genomic Islands , Interspersed Repetitive Sequences , Virulence Factors/genetics , Cluster Analysis , DNA Mutational Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
8.
Nucleic Acids Res ; 37(22): e148, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19815668

ABSTRACT

High-throughput sequencing of cDNA has been used to study eukaryotic transcription on a genome-wide scale to single base pair resolution. In order to compensate for the high ribonuclease activity in bacterial cells, we have devised an equivalent technique optimized for studying complete prokaryotic transcriptomes that minimizes the manipulation of the RNA sample. This new approach uses Illumina technology to sequence single-stranded (ss) cDNA, generating information on both the direction and level of transcription throughout the genome. The protocol, and associated data analysis programs, are freely available from http://www.sanger.ac.uk/Projects/Pathogens/Transcriptome/. We have successfully applied this method to the bacterial pathogens Salmonella bongori and Streptococcus pneumoniae and the yeast Schizosaccharomyces pombe. This method enables experimental validation of genetic features predicted in silico and allows the easy identification of novel transcripts throughout the genome. We also show that there is a high correlation between the level of gene expression calculated from ss-cDNA and double-stranded-cDNA sequencing, indicting that ss-cDNA sequencing is both robust and appropriate for use in quantitative studies of transcription. Hence, this simple method should prove a useful tool in aiding genome annotation and gene expression studies in both prokaryotes and eukaryotes.


Subject(s)
Gene Expression Profiling/methods , Sequence Analysis, DNA/methods , DNA, Complementary/chemistry , DNA, Single-Stranded/chemistry , Gene Library , RNA Splicing , Salmonella/genetics , Schizosaccharomyces/genetics , Streptococcus pneumoniae/genetics , Transcription, Genetic
9.
PLoS Genet ; 5(7): e1000569, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19609351

ABSTRACT

High-density, strand-specific cDNA sequencing (ssRNA-seq) was used to analyze the transcriptome of Salmonella enterica serovar Typhi (S. Typhi). By mapping sequence data to the entire S. Typhi genome, we analyzed the transcriptome in a strand-specific manner and further defined transcribed regions encoded within prophages, pseudogenes, previously un-annotated, and 3'- or 5'-untranslated regions (UTR). An additional 40 novel candidate non-coding RNAs were identified beyond those previously annotated. Proteomic analysis was combined with transcriptome data to confirm and refine the annotation of a number of hpothetical genes. ssRNA-seq was also combined with microarray and proteome analysis to further define the S. Typhi OmpR regulon and identify novel OmpR regulated transcripts. Thus, ssRNA-seq provides a novel and powerful approach to the characterization of the bacterial transcriptome.


Subject(s)
Salmonella typhi/genetics , Bacterial Proteins/analysis , DNA, Complementary , Gene Expression Profiling , Proteomics , RNA, Bacterial/analysis , RNA, Bacterial/genetics , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...