Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
mSphere ; 7(6): e0045622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36377914

ABSTRACT

Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Previous studies on Fusarium species have highlighted the involvement of the Ste2 G-protein-coupled receptor (GPCR) in mediating polarized hyphal growth toward host-released peroxidase. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to Fusarium graminearum chemotropism and pathogenicity. Fgste3Δ deletion strains were found to be compromised in the chemotropic response toward peroxidase, development of lesions on germinating wheat, and infection of Arabidopsis thaliana leaves. In the absence of FgSte3 or FgSte2, F. graminearum cells exposed to peroxidase showed no phosphorylation of the cell-wall integrity, mitogen-activated protein kinase pathway component Mgv1. In addition, transcriptomic gene expression profiling yielded a list of genes involved in cellular reorganization, cell wall remodeling, and infection-mediated responses that were differentially modulated by peroxidase when FgSte3 was present. Deletion of FgSte3 yielded the downregulation of genes associated with mycotoxin biosynthesis and appressorium development, compared to the wild-type strain, both in the presence of peroxidase. Together, these findings contribute to our understanding of the mechanism underlying fungal chemotropism and pathogenesis while raising the novel hypothesis that FgSte2 and FgSte3 are interdependent on each other for the mediation of the redirection of hyphal growth in response to host-derived peroxidase. IMPORTANCE Fusarium head blight of wheat, caused by the filamentous fungus Fusarium graminearum, leads to devastating global food shortages and economic losses. Fungal hyphal chemotropism has been shown to be a major contributor to host-pathogen interactions. Here, the role of the opposite mating type GPCR, Ste3, is characterized with respect to F. graminearum chemotropism and pathogenicity. These findings contribute to our understanding of the mechanisms underlying fungal chemotropism and pathogenesis.


Subject(s)
Fusarium , Fusarium/genetics , Peroxidases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Peroxidase , Receptors, G-Protein-Coupled/metabolism
2.
Pharmacogenomics J ; 22(2): 100-108, 2022 03.
Article in English | MEDLINE | ID: mdl-34824386

ABSTRACT

Indigenous Australians face a disproportionately severe burden of chronic disease relative to other Australians, with elevated rates of morbidity and mortality. While genomics technologies are slowly gaining momentum in personalised treatments for many, a lack of pharmacogenomic research in Indigenous peoples could delay adoption. Appropriately implementing pharmacogenomics in clinical care necessitates an understanding of the frequencies of pharmacologically relevant genetic variants within Indigenous populations. We analysed whole-genome sequence data from 187 individuals from the Tiwi Islands and characterised the pharmacogenomic landscape of this population. Specifically, we compared variant profiles and allelic distributions of previously described pharmacologically significant genes and variants with other population groups. We identified 22 translationally relevant pharmacogenomic variants and 18 clinically actionable guidelines with implications for drug dosing and treatment of conditions including heart disease, diabetes and cancer. We specifically observed increased poor and intermediate metabolizer phenotypes in the CYP2C9 (PM:19%, IM:44%) and CYP2C19 (PM:18%, IM:44%) genes.


Subject(s)
Indigenous Peoples , Pharmacogenomic Testing , Australia , Cytochrome P-450 CYP2C9/genetics , Humans , Pharmacogenomic Variants
3.
Environ Microbiol ; 23(7): 3384-3400, 2021 07.
Article in English | MEDLINE | ID: mdl-31943734

ABSTRACT

The Gypsum Hill (GH) springs on Axel Heiberg Island in the Canadian high Arctic are host to chemolithoautotrophic, sulfur-oxidizing streamers that flourish in the high Arctic winter in water temperatures from -1.3 to 7°C with ~8% salinity in a high Arctic winter environment with air temperatures commonly less than -40°C and an average annual air temperature of -15°C. Metagenome sequencing and binning of streamer samples produced a 96% complete Thiomicrorhabdus sp. metagenome-assembled genome representing a possible new species or subspecies. This is the most cold- and salt-extreme source environment for a Thiomicrorhabdus genome yet described. Metaproteomic and metatranscriptomic analysis attributed nearly all gene expression in the streamers to the Thiomicrorhabdus sp. and suggested that it is active in CO2 fixation and oxidation of sulfide to elemental sulfur. In situ geochemical and isotopic analyses of the fractionation of multiple sulfur isotopes determined the biogeochemical transformation of sulfur from its source in Carboniferous evaporites to biotic processes occurring in the sediment and streamers. These complementary molecular tools provided a functional link between the geochemical substrates and the collective traits and activity that define the microbial community's interactions within a unique polar saline habitat where Thiomicrorhabdus-dominated streamers form and flourish.


Subject(s)
Sulfur , Canada , DNA, Bacterial , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA
4.
Article in English | MEDLINE | ID: mdl-33014890

ABSTRACT

An important component in host resistance to malaria infection are inherited mutations that give rise to abnormalities and deficiencies in erythrocyte proteins and enzymes. Understanding how such mutations confer protection against the disease may be useful for developing new treatment strategies. A mouse ENU-induced mutagenesis screen for novel malaria resistance-conferring mutations identified a novel non-sense mutation in the gene encoding porphobilinogen deaminase (PBGD) in mice, denoted here as PbgdMRI58155. Heterozygote PbgdMRI58155 mice exhibited ~50% reduction in cellular PBGD activity in both mature erythrocytes and reticulocytes, although enzyme activity was ~10 times higher in reticulocytes than erythrocytes. When challenged with blood-stage P. chabaudi, which preferentially infects erythrocytes, heterozygote mice showed a modest but significant resistance to infection, including reduced parasite growth. A series of assays conducted to investigate the mechanism of resistance indicated that mutant erythrocyte invasion by P. chabaudi was normal, but that following intraerythrocytic establishment a significantly greater proportions of parasites died and therefore, affected their ability to propagate. The Plasmodium resistance phenotype was not recapitulated in Pbgd-deficient mice infected with P. berghei, which prefers reticulocytes, or when P. falciparum was cultured in erythrocytes from patients with acute intermittent porphyria (AIP), which had modest (20-50%) reduced levels of PBGD. Furthermore, the growth of Pbgd-null P. falciparum and Pbgd-null P. berghei parasites, which grew at the same rate as their wild-type counterparts in normal cells, were not affected by the PBGD-deficient background of the AIP erythrocytes or Pbgd-deficient mice. Our results confirm the dispensability of parasite PBGD for P. berghei infection and intraerythrocytic growth of P. falciparum, but for the first time identify a requirement for host erythrocyte PBGD by P. chabaudi during in vivo blood stage infection.


Subject(s)
Malaria , Plasmodium chabaudi , Porphyria, Acute Intermittent , Animals , Erythrocytes , Humans , Mice , Plasmodium berghei/genetics , Plasmodium falciparum
5.
Front Genet ; 11: 432, 2020.
Article in English | MEDLINE | ID: mdl-32425989

ABSTRACT

The F2RL3 gene encoding protease activated receptor 4 (PAR4) contains a single nucleotide variant, rs773902, that is functional. The resulting PAR4 variants, Thr120, and Ala120, are known to differently affect platelet reactivity to thrombin. Significant population differences in the frequency of the allele indicate it may be an important determinant in the ethnic differences that exist in thrombosis and hemostasis, and for patient outcomes to PAR antagonist anti-platelet therapies. Here we determined the frequency of rs773902 in an Indigenous Australian group comprising 467 individuals from the Tiwi Islands. These people experience high rates of renal disease that may be related to platelet and PAR4 function and are potential recipients of PAR-antagonist treatments. The rs773902 minor allele frequency (Thr120) in the Tiwi Islanders was 0.32, which is similar to European and Asian groups and substantially lower than Melanesians and some African groups. Logistic regression and allele distortion testing revealed no significant associations between the variant and several markers of renal function, as well as blood glucose and blood pressure. These findings suggest that rs773902 is not an important determinant for renal disease in this Indigenous Australian group. However, the relationships between rs773902 genotype and platelet and drug responsiveness in the Tiwi, and the allele frequency in other Indigenous Australian groups should be evaluated.

6.
Mol Plant Microbe Interact ; 33(6): 842-858, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32116115

ABSTRACT

The mycoparasite Clonostachys rosea ACM941 is under development as a biocontrol organism against Fusarium graminearum, the causative agent of Fusarium head blight in cereals. To identify molecular factors associated with this interaction, the transcriptomic and exometabolomic profiles of C. rosea and F. graminearum GZ3639 were compared during coculture. Prior to physical contact, the antagonistic activity of C. rosea correlated with a response heavily dominated by upregulation of polyketide synthase gene clusters, consistent with the detected accumulation of corresponding secondary metabolite products. Similarly, prior to contact, trichothecene gene clusters were upregulated in F. graminearum, while those responsible for fusarielin and fusarin biosynthesis were downregulated, correlating with an accumulation of trichothecene products in the interaction zone over time. A concomitant increase in 15-acetyl deoxynivalenol-3-glucoside in the interaction zone was also detected, with C. rosea established as the source of this detoxified mycotoxin. After hyphal contact, C. rosea was found to predominantly transcribe genes encoding cell wall-degradation enzymes, major facilitator superfamily sugar transporters, anion:cation symporters, as well as alternative carbon source utilization pathways, together indicative of a transition to necrotropism at this stage. F. graminearum notably activated the transcription of phosphate starvation pathway signature genes at this time. Overall, a number of signature molecular mechanisms likely contributing to antagonistic activity by C. rosea against F. graminearum, as well as its mycotoxin tolerance, are identified in this report, yielding several new testable hypotheses toward understanding the basis of C. rosea as a biocontrol agent for continued agronomic development and application.


Subject(s)
Biological Control Agents , Fusarium/pathogenicity , Hypocreales/physiology , Mycotoxins , Transcriptome , Metabolome , Polyketide Synthases/genetics
7.
Sci Rep ; 10(1): 2303, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-32024943

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Methods Mol Biol ; 2024: 287-300, 2019.
Article in English | MEDLINE | ID: mdl-31364057

ABSTRACT

Over the last 17 years, a large amount of knowledge has been accumulated on various aspects of major histocompatibility complex (MHC) molecules. In conjunction, numerous algorithms and tools have been developed to screen protein molecules for these MHC receptor sites. By combining these computational tools and databases with genomic sequence information that is now widely available for a vast range of organisms, it is possible to screen whole genomes for MHC epitopes. By pre-screening these genomes, it allows the researcher to narrow down possible protein targets for further analysis by traditional tools such as gene knockouts and animal efficacy studies.


Subject(s)
Computational Biology/methods , Major Histocompatibility Complex , Algorithms , Animals , Databases, Protein , Epitopes , Humans
9.
BMC Genomics ; 20(Suppl 8): 546, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31307400

ABSTRACT

BACKGROUND: Short-read resequencing of genomes produces abundant information of the genetic variation of individuals. Due to their numerous nature, these variants are rarely exhaustively validated. Furthermore, low levels of undetected variant miscalling will have a systematic and disproportionate impact on the interpretation of individual genome sequence information, especially should these also be carried through into in reference databases of genomic variation. RESULTS: We find that sequence variation from short-read sequence data is subject to recurrent-yet-intermittent miscalling that occurs in a sequence intrinsic manner and is very sensitive to sequence read length. The miscalls arise from difficulties aligning short reads to redundant genomic regions, where the rate of sequencing error approaches the sequence diversity between redundant regions. We find the resultant miscalled variants to be sensitive to small sequence variations between genomes, and thereby are often intrinsic to an individual, pedigree, strain or human ethnic group. In human exome sequences, we identify 2-300 recurrent false positive variants per individual, almost all of which are present in public databases of human genomic variation. From the exomes of non-reference strains of inbred mice, we identify 3-5000 recurrent false positive variants per mouse - the number of which increasing with greater distance between an individual mouse strain and the reference C57BL6 mouse genome. We show that recurrently miscalled variants may be reproduced for a given genome from repeated simulation rounds of read resampling, realignment and recalling. As such, it is possible to identify more than two-thirds of false positive variation from only ten rounds of simulation. CONCLUSION: Identification and removal of recurrent false positive variants from specific individual variant sets will improve overall data quality. Variant miscalls arising are highly sequence intrinsic and are often specific to an individual, pedigree or ethnicity. Further, read length is a strong determinant of whether given false variants will be called for any given genome - which has profound significance for cohort studies that pool datasets collected and sequenced at different points in time.


Subject(s)
Genomics/methods , Mutation, Missense/genetics , Sequence Analysis, DNA/methods , Animals , Databases, Genetic , Ethnicity/genetics , False Positive Reactions , Humans , Mice , Research Design
10.
Sci Rep ; 9(1): 6356, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015511

ABSTRACT

Plasmodium falciparum malaria causes half a million deaths per year, with up to 9% of this mortality caused by cerebral malaria (CM). One of the major processes contributing to the development of CM is an excess of host inflammatory cytokines. Recently K+ signaling has emerged as an important mediator of the inflammatory response to infection; we therefore investigated whether mice carrying an ENU induced activation of the electroneutral K+ channel KCC1 had an altered response to Plasmodium berghei. Here we show that Kcc1M935K/M935K mice are protected from the development of experimental cerebral malaria, and that this protection is associated with an increased CD4+ and TNFa response. This is the first description of a K+ channel affecting the development of experimental cerebral malaria.


Subject(s)
Ion Channel Gating , Malaria, Cerebral/metabolism , Malaria, Cerebral/prevention & control , Solute Carrier Family 12, Member 4/metabolism , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Disease Resistance , Female , Inflammation Mediators/metabolism , Malaria, Cerebral/immunology , Malaria, Cerebral/parasitology , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mutation/genetics , Plasmodium berghei/physiology , Solute Carrier Family 12, Member 4/genetics
11.
Front Microbiol ; 9: 1061, 2018.
Article in English | MEDLINE | ID: mdl-29930539

ABSTRACT

Clonostachys rosea strain ACM941 is a fungal bio-control agent patented against the causative agent of Fusarium Head Blight, Fusarium graminearum. Although the molecular details remain enigmatic, previous studies have suggested that C. rosea may secrete F. graminearum growth inhibitors. Further toward this, experiments described herein show that induction of C. rosea cultures by the addition of an aliquot of F. graminearum(Fg)-spent media (including macroconidia), yield C. rosea (Cr)-spent media that elicited higher anti-F. graminearum activity than either control or deoxynivalenol (DON)-induced Cr-spent media. To gain additional insight into the genetic and metabolic factors modulating this interaction, transcriptomic (RNAseq) profiles of C. rosea in response to DON and Fg-spent media treatment, were developed. This analysis revealed 24,112 C. rosea unigenes, of which 5,605 and 6,285 were differentially regulated by DON and F-spent media, respectively. More than half of these unigenes were up-regulated, with annotations, most notably in the Fg-spent media treatment data, suggesting enhancement of polyketide (PK) and non-ribosomal peptide (NRP) secondary metabolite precursor synthesis, and PK/NRP-like synthases. Four ABC transporters were also up-regulated in response to Fg-spent media. Further analysis showed that the PK and NRP-like synthases belong to three gene clusters that also include ABC transporters, and other genes known to tailor secondary metabolite biosynthesis. The RNAseq data was further validated using quantitative RT-qPCR. Taken together, these results show that C. rosea responds to the presence of Fg-spent media (and to a lesser extent, DON-alone) by up-regulating unique aspects of its secondary metabolism-related genetic repertoire. The identities and roles of C. rosea secondary metabolites produced by the targeted gene clusters are now under investigation.

12.
Dis Model Mech ; 11(5)2018 05 21.
Article in English | MEDLINE | ID: mdl-29720471

ABSTRACT

In this study, we performed a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice to identify novel genes or alleles that regulate erythropoiesis. Here, we describe a recessive mouse strain, called RBC19, harbouring a point mutation within the housekeeping gene, Tpi1, which encodes the glycolysis enzyme, triosephosphate isomerase (TPI). A serine in place of a phenylalanine at amino acid 57 severely diminishes enzyme activity in red blood cells and other tissues, resulting in a macrocytic haemolytic phenotype in homozygous mice, which closely resembles human TPI deficiency. A rescue study was performed using bone marrow transplantation of wild-type donor cells, which restored all haematological parameters and increased red blood cell enzyme function to wild-type levels after 7 weeks. This is the first study performed in a mammalian model of TPI deficiency, demonstrating that the haematological phenotype can be rescued.


Subject(s)
Anemia, Hemolytic, Congenital Nonspherocytic/complications , Anemia, Hemolytic, Congenital Nonspherocytic/genetics , Anemia, Hemolytic/complications , Anemia, Hemolytic/therapy , Bone Marrow Transplantation , Carbohydrate Metabolism, Inborn Errors/complications , Carbohydrate Metabolism, Inborn Errors/genetics , Mutagenesis , Triose-Phosphate Isomerase/deficiency , Anemia, Hemolytic/blood , Anemia, Hemolytic, Congenital Nonspherocytic/blood , Animals , Carbohydrate Metabolism, Inborn Errors/blood , Disease Models, Animal , Erythrocytes/metabolism , Ethylnitrosourea , Glycolysis , Homozygote , Mice , Mice, Mutant Strains , Mutation, Missense/genetics , Phenotype , Triose-Phosphate Isomerase/blood , Triose-Phosphate Isomerase/genetics
13.
Mamm Genome ; 29(7-8): 507-522, 2018 08.
Article in English | MEDLINE | ID: mdl-29594458

ABSTRACT

Malaria remains a deadly parasitic disease caused by Plasmodium, claiming almost half a million lives every year. While parasite genetics and biology are often the major targets in many studies, it is becoming more evident that host genetics plays a crucial role in the outcome of the infection. Similarly, Plasmodium infections in mice also rely heavily on the genetic background of the mice, and often correlate with observations in human studies, due to their high genetic homology with humans. As such, murine models of malaria are a useful tool for understanding host responses during Plasmodium infections, as well as dissecting host-parasite interactions through various genetic manipulation techniques. Reverse genetic approach such as quantitative trait loci studies and random mutagenesis screens have been employed to discover novel host genes that affect malaria susceptibility in mouse models, while other targeted studies utilize mouse models to validate observation from human studies. Herein, we review the findings from the past and present studies on murine models of hepatic and erythrocytic stages of malaria and speculate on how the current mouse models benefit from the recent development in CRISPR/Cas9 gene editing technology.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Host-Parasite Interactions/genetics , Malaria/genetics , Malaria/parasitology , Plasmodium/physiology , Animals , Disease Models, Animal , Erythrocytes/metabolism , Erythrocytes/parasitology , Gene Targeting , Genetic Linkage , Genome-Wide Association Study , Hepatocytes/metabolism , Hepatocytes/parasitology , Humans , Life Cycle Stages , Mice , Mutagenesis , Quantitative Trait Loci
14.
G3 (Bethesda) ; 7(9): 3133-3144, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28751503

ABSTRACT

Allelic heterogeneity is a common phenomenon where a gene exhibits a different phenotype depending on the nature of its genetic mutations. In the context of genes affecting malaria susceptibility, it allowed us to explore and understand the intricate host-parasite interactions during malaria infections. In this study, we described a gene encoding erythrocytic ankyrin-1 (Ank-1) which exhibits allelic-dependent heterogeneous phenotypes during malaria infections. We conducted an ENU mutagenesis screen on mice and identified two Ank-1 mutations, one resulting in an amino acid substitution (MRI95845), and the other a truncated Ank-1 protein (MRI96570). Both mutations caused hereditary spherocytosis-like phenotypes and confer differing protection against Plasmodium chabaudi infections. Upon further examination, the Ank-1(MRI96570) mutation was found to inhibit intraerythrocytic parasite maturation, whereas Ank-1(MRI95845) caused increased bystander erythrocyte clearance during infection. This is the first description of allelic heterogeneity in ankyrin-1 from the direct comparison between two Ank-1 mutations. Despite the lack of direct evidence from population studies, this data further supported the protective roles of ankyrin-1 mutations in conferring malaria protection. This study also emphasized the importance of such phenomena in achieving a better understanding of host-parasite interactions, which could be the basis of future studies.


Subject(s)
Alleles , Ankyrins/genetics , Genetic Heterogeneity , Genetic Predisposition to Disease , Host-Parasite Interactions/genetics , Malaria/genetics , Animals , Disease Models, Animal , Disease Resistance/genetics , Erythrocytes/metabolism , Erythrocytes/parasitology , Erythrocytes/pathology , Erythrocytes/ultrastructure , Female , Malaria/blood , Malaria/parasitology , Malaria/pathology , Male , Mice , Mutation , Osmotic Fragility/genetics , Phenotype , Spherocytosis, Hereditary/genetics , Spherocytosis, Hereditary/pathology , Whole Genome Sequencing
15.
Sci Rep ; 7: 41975, 2017 02 08.
Article in English | MEDLINE | ID: mdl-28176804

ABSTRACT

Griseofulvin, an orally active antifungal drug used to treat dermatophyte infections, has a secondary effect of inducing cytochrome P450-mediated production of N-methyl protoporphyrin IX (N-MPP). N-MPP is a potent competitive inhibitor of the heme biosynthetic-enzyme ferrochelatase, and inhibits the growth of cultured erythrocyte stage Plasmodium falciparum. Novel drugs against Plasmodium are needed to achieve malaria elimination. Thus, we investigated whether griseofulvin shows anti-plasmodial activity. We observed that the intraerythrocytic growth of P. falciparum is inhibited in red blood cells pretreated with griseofulvin in vitro. Treatment with 100 µM griseofulvin was sufficient to prevent parasite growth and induce the production of N-MPP. Inclusion of the ferrochelatase substrate PPIX blocked the inhibitory activity of griseofulvin, suggesting that griseofulvin exerts its activity through the N-MPP-dependent inhibition of ferrochelatase. In an ex-vivo study, red blood cells from griseofulvin-treated subjects were refractory to the growth of cultured P. falciparum. However, in a clinical trial griseofulvin failed to show either therapeutic or prophylactic effect in subjects infected with blood stage P. falciparum. Although the development of griseofulvin as an antimalarial is not warranted, it represents a novel inhibitor of P. falciparum growth and acts via the N-MPP-dependent inhibition of ferrochelatase.


Subject(s)
Antifungal Agents/therapeutic use , Erythrocytes/parasitology , Ferrochelatase/antagonists & inhibitors , Griseofulvin/therapeutic use , Malaria, Falciparum/parasitology , Plasmodium falciparum/growth & development , Adolescent , Adult , Animals , Antifungal Agents/metabolism , Case-Control Studies , Cohort Studies , Erythrocytes/drug effects , Erythrocytes/metabolism , Female , Follow-Up Studies , Griseofulvin/metabolism , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/pathology , Male , Middle Aged , Pilot Projects , Plasmodium falciparum/drug effects , Prognosis , Young Adult
16.
Blood Adv ; 1(26): 2624-2636, 2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29296915

ABSTRACT

The malaria parasite hijacks host erythrocytes to shield itself from the immune system and proliferate. Red blood cell abnormalities can provide protection from malaria by impeding parasite invasion and growth within the cell or by compromising the ability of parasites to avoid host clearance. Here, we describe 2 N-ethyl-N-nitrosourea-induced mouse lines, SptbMRI26194 and SptbMRI53426 , containing single-point mutations in the erythrocyte membrane skeleton gene, ß spectrin (Sptb), which exhibit microcytosis but retain a relatively normal ratio of erythrocyte surface area to volume and are highly resistant to rodent malaria. We propose the major factor responsible for malaria protection is the specific clearance of mutant erythrocytes, although an enhanced clearance of uninfected mutant erythrocytes was also observed (ie, the bystander effect). Using an in vivo erythrocyte tracking assay, we established that this phenomenon occurs irrespective of host environment, precluding the involvement of nonerythrocytic cells in the resistance mechanism. Furthermore, we recapitulated this phenotype by disrupting the interaction between ankyrin-1 and ß spectrin in vivo using CRISPR/Cas9 genome editing technology, thereby genetically validating a potential antimalarial target. This study sheds new light on the role of ß spectrin during Plasmodium infection and highlights how changes in the erythrocyte cytoskeleton can substantially influence malaria susceptibility with minimal adverse consequences for the host.

17.
Sci Rep ; 6: 37197, 2016 11 16.
Article in English | MEDLINE | ID: mdl-27848995

ABSTRACT

Genetic defects in various red blood cell (RBC) cytoskeletal proteins have been long associated with changes in susceptibility towards malaria infection. In particular, while ankyrin (Ank-1) mutations account for approximately 50% of hereditary spherocytosis (HS) cases, an association with malaria is not well-established, and conflicting evidence has been reported. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced ankyrin mutation MRI61689 that gives rise to two different ankyrin transcripts: one with an introduced splice acceptor site resulting a frameshift, the other with a skipped exon. Ank-1(MRI61689/+) mice exhibit an HS-like phenotype including reduction in mean corpuscular volume (MCV), increased osmotic fragility and reduced RBC deformability. They were also found to be resistant to rodent malaria Plasmodium chabaudi infection. Parasites in Ank-1(MRI61689/+) erythrocytes grew normally, but red cells showed resistance to merozoite invasion. Uninfected Ank-1(MRI61689/+) erythrocytes were also more likely to be cleared from circulation during infection; the "bystander effect". This increased clearance is a novel resistance mechanism which was not observed in previous ankyrin mouse models. We propose that this bystander effect is due to reduced deformability of Ank-1(MRI61689/+) erythrocytes. This paper highlights the complex roles ankyrin plays in mediating malaria resistance.


Subject(s)
Ankyrins/genetics , Erythrocytes/parasitology , Ethylnitrosourea/toxicity , Malaria/parasitology , Mutation/drug effects , Plasmodium chabaudi/physiology , Alkylating Agents/toxicity , Animals , Erythrocyte Deformability/drug effects , Erythrocytes/metabolism , Host-Parasite Interactions , Malaria/genetics , Merozoites/physiology , Mice
18.
Blood ; 128(9): 1290-301, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27465915

ABSTRACT

The factors that determine red blood cell (RBC) lifespan and the rate of RBC aging have not been fully elucidated. In several genetic conditions, including sickle cell disease, thalassemia, and G6PD deficiency, erythrocyte lifespan is significantly shortened. Many of these diseases are also associated with protection from severe malaria, suggesting a role for accelerated RBC senescence and clearance in malaria resistance. Here, we report a novel, N-ethyl-N-nitrosourea-induced mutation that causes a gain of function in adenosine 5'-monophosphate deaminase (AMPD3). Mice carrying the mutation exhibit rapid RBC turnover, with increased erythropoiesis, dramatically shortened RBC lifespan, and signs of increased RBC senescence/eryptosis, suggesting a key role for AMPD3 in determining RBC half-life. Mice were also found to be resistant to infection with the rodent malaria Plasmodium chabaudi. We propose that resistance to P. chabaudi is mediated by increased RBC turnover and higher rates of erythropoiesis during infection.


Subject(s)
AMP Deaminase , Erythrocytes/immunology , Immunity, Innate , Malaria , Mutation , Plasmodium chabaudi/immunology , AMP Deaminase/genetics , AMP Deaminase/immunology , Animals , Cellular Senescence/genetics , Cellular Senescence/immunology , Erythrocytes/parasitology , Erythropoiesis/genetics , Erythropoiesis/immunology , Ethylnitrosourea/toxicity , Half-Life , Malaria/genetics , Malaria/immunology , Male , Mice
19.
BMC Genomics ; 16: 866, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26503232

ABSTRACT

BACKGROUND: N-ethyl-N-nitrosourea (ENU) mutagen has become the method of choice for inducing random mutations for forward genetics applications. However, distinguishing induced mutations from sequencing errors or sporadic mutations is difficult, which has hampered surveys of potential biases in the methodology in the past. Addressing this issue, we created a large cohort of mice with biological replicates enabling the confident calling of induced mutations, which in turn allowed us to conduct a comprehensive analysis of potential biases in mutation properties and genomic location. RESULTS: In the exome sequencing data we observe the known preference of ENU to cause A:T=>G:C transitions in longer genes. Mutations were frequently clustered and inherited in blocks hampering attempts to pinpoint individual causative mutations by genome analysis only. Furthermore, ENU mutations were biased towards areas in the genome that are accessible in testis, potentially limiting the scope of forward genetic approaches to only 1-10% of the genome. CONCLUSION: ENU provides a powerful tool for exploring the genome-phenome relationship, however forward genetic applications that require the mutation to be passed on through the germ line may be limited to explore only genes that are accessible in testis.


Subject(s)
Ethylnitrosourea/toxicity , Mutagens/toxicity , Mutation/genetics , Animals , Exome/drug effects , Exome/genetics , Genome-Wide Association Study , Male , Mice , Mutagenesis/drug effects , Mutagenesis/genetics , Testis/drug effects , Testis/metabolism
20.
Infect Immun ; 83(11): 4322-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26303393

ABSTRACT

The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, Tfrc(MRI24910), identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria.


Subject(s)
Erythrocytes/metabolism , Iron Deficiencies , Malaria/parasitology , Mutation, Missense , Plasmodium chabaudi/physiology , Receptors, Transferrin/genetics , Animals , Disease Susceptibility , Female , Humans , Malaria/blood , Male , Mice , Receptors, Transferrin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...