Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Metabolism ; 150: 155696, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804881

ABSTRACT

BACKGROUND: Growing evidence demonstrates the role of the striatal dopamine system in the regulation of glucose metabolism. Treatment with dopamine antagonists is associated with insulin resistance and hyperglycemia, while dopamine agonists are used in treatment of type 2 diabetes. The mechanism underlying striatal dopamine effects in glucose metabolism, however is not fully understood. Here, we provide mechanistic insights into the role of nucleus accumbens shell (sNAc) dopaminergic signaling in systemic glucose metabolism. METHODS: Endogenous glucose production (EGP), blood glucose and mRNA expression in the lateral hypothalamic area (LHA) in male Wistar rats were measured following infusion of vanoxerine (VNX, dopamine reuptake inhibitor) in the sNAc. Thereafter, we analyzed projections from sNAc Drd1-expressing neurons to LHA using D1-Cre male Long-Evans rats, Cre-dependent viral tracers and fluorescence immunohistochemistry. Brain slice electrophysiology in adult mice was used to study spontaneous excitatory postsynaptic currents of sNAc Drd1-expressing neurons following VNX application. Finally, we assessed whether GABAergic LHA activity and hepatic vagal innervation were required for the effect of sNAc-VNX on glucose metabolism by combining infusion of sNAc-VNX with LHA-bicuculline, performing vagal recordings and combining infusion of sNAc-VNX with hepatic vagal denervation. RESULTS: VNX infusion in the sNAc strongly decreased endogenous glucose production, prevented glucose increases over time, reduced Slc17A6 and Hcrt mRNA in LHA, and increased vagal activity. Furthermore, sNAc Drd1-expressing neurons increased spontaneous firing following VNX application, and viral tracing of sNAc Drd1-expressing neurons revealed direct projections to LHA with on average 67 % of orexin cells directly targeted by sNAc Drd1-expressing neurons. Importantly, the sNAc-VNX-induced effect on glucose metabolism was dependent on GABAergic signaling in the LHA and on intact hepatic vagal innervation. CONCLUSIONS: We show that sNAc dopaminergic signaling modulates hepatic glucose metabolism through GABAergic inputs to glutamatergic LHA cells and hepatic vagal innervation. This demonstrates that striatal control of glucose metabolism involves a dopaminergic sNAc-LHA-liver axis and provides a potential explanation for the effects of dopamine agonists and antagonists on glucose metabolism.


Subject(s)
Diabetes Mellitus, Type 2 , Hypothalamic Area, Lateral , Rats , Male , Mice , Animals , Hypothalamic Area, Lateral/metabolism , Nucleus Accumbens/metabolism , Dopamine/metabolism , Rodentia/metabolism , Dopamine Agonists/metabolism , Dopamine Agonists/pharmacology , Diabetes Mellitus, Type 2/metabolism , Rats, Wistar , Rats, Long-Evans , Glucose/metabolism , Liver/metabolism , RNA, Messenger/metabolism
2.
Biol Psychiatry ; 94(5): 424-436, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36805080

ABSTRACT

BACKGROUND: A large body of evidence highlights the importance of genetic variants in the development of psychiatric and metabolic conditions. Among these, the TaqIA polymorphism is one of the most commonly studied in psychiatry. TaqIA is located in the gene that codes for the ankyrin repeat and kinase domain containing 1 kinase (Ankk1) near the dopamine D2 receptor (D2R) gene. Homozygous expression of the A1 allele correlates with a 30% to 40% reduction of striatal D2R, a typical feature of addiction, overeating, and other psychiatric pathologies. The mechanisms by which the variant influences dopamine signaling and behavior are unknown. METHODS: Here, we used transgenic and viral-mediated strategies to reveal the role of Ankk1 in the regulation of activity and functions of the striatum. RESULTS: We found that Ankk1 is preferentially enriched in striatal D2R-expressing neurons and that Ankk1 loss of function in the dorsal and ventral striatum leads to alteration in learning, impulsivity, and flexibility resembling endophenotypes described in A1 carriers. We also observed an unsuspected role of Ankk1 in striatal D2R-expressing neurons of the ventral striatum in the regulation of energy homeostasis and documented differential nutrient partitioning in humans with or without the A1 allele. CONCLUSIONS: Overall, our data demonstrate that the Ankk1 gene is necessary for the integrity of striatal functions and reveal a new role for Ankk1 in the regulation of body metabolism.


Subject(s)
Behavior, Addictive , Dopamine , Humans , Receptors, Dopamine D2/genetics , Receptors, Dopamine D2/metabolism , Neurons/metabolism , Reward
3.
Adv Biol (Weinh) ; 7(11): e2200116, 2023 11.
Article in English | MEDLINE | ID: mdl-35818679

ABSTRACT

Eating during the rest phase is associated with metabolic syndrome, proposed to result from a conflict between food consumption and the energy-saving state imposed by the circadian system. However, in nocturnal rodents, eating during the rest phase (day-feeding, DF) also implies food intake during light exposure. To investigate whether light exposure contributes to DF-induced metabolic impairments, animals receive food during the subjective day without light. A skeleton photoperiod (SP) is used to entrain rats to a 12:12 cycle with two short light pulses framing the subjective day. DF-induced adiposity is prevented by SP, suggesting that the conflict between light and feeding stimulates fat accumulation. However, all animals under SP conditions develop glucose intolerance regardless of their feeding schedule. Moreover, animals under SP with ad libitum or night-feeding have increased adiposity. SP animals show a delayed onset of the daily rise in body temperature and energy expenditure and shorter duration of nighttime activity, which may contribute to the metabolic disturbances. These data emphasize that metabolic homeostasis can only be achieved when all daily cycling variables are synchronized. Even small shifts in the alignment of different metabolic rhythms, such as those induced by SP, may predispose individuals to metabolic disease.


Subject(s)
Glucose Intolerance , Photoperiod , Rats , Animals , Adiposity , Feeding Behavior , Circadian Rhythm , Glucose Intolerance/etiology , Obesity/etiology , Skeleton
4.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-36198294

ABSTRACT

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Subject(s)
Astrocytes , Hypothalamus , Animals , Astrocytes/metabolism , Energy Metabolism/physiology , Glucose/metabolism , Glutamic Acid/metabolism , Hypothalamus/metabolism , Mice , Obesity/metabolism , Paraventricular Hypothalamic Nucleus/metabolism
5.
Front Physiol ; 13: 973461, 2022.
Article in English | MEDLINE | ID: mdl-36105299

ABSTRACT

Nocturnal light pollution has been rapidly increasing during the last decades and even though dim artificial light at night (ALAN) has been associated with metabolic diseases, its mechanism is still far from clear. Therefore, the aim of our study was to thoroughly analyze the effects of ALAN on energy metabolism, metabolites, metabolic hormones, and gene expression. Male Wistar rats were kept in either the standard light:dark (12:12) cycle or exposed to ALAN (∼2 lx) during the whole 12-h dark phase for 2 weeks. Energy metabolism was measured in metabolic cages. In addition, we measured plasma and hepatic metabolites, clock and metabolic gene expression in the liver and epididymal adipose tissue, and plasma hormone levels. In ALAN rats, we observed an unexpected transitory daytime peak of locomotor activity and a suppression of the peak in locomotor activity at the beginning of the dark period. These changes were mirrored in the respiratory exchange ratio. Plasma metabolites became arrhythmic, and plasma and hepatic cholesterol levels were increased. Lost rhythmicity of metabolites was associated with disrupted behavioral rhythms and expression of metabolic genes. In the liver, the rhythms of metabolic sensors were either phase-advanced (Ppara, Pgc1a, Nampt) or arrhythmic (Sirt1, Lxra) after ALAN. The rhythmic pattern of Ppara and Sirt1 was abolished in the adipose tissue. In the liver, the amplitude of the daily rhythm in glycogen content was attenuated, the Glut2 rhythm was phase-advanced and Foxo1 lost its daily rhythmicity. Moreover, hepatic Foxo1 and Gck were up-regulated after ALAN. Interestingly, several parameters of lipid metabolism gained rhythmicity (adiponectin, Hmgcs2, Lpl, Srebf1c) in the liver, whereas Noct became arrhythmic in the adipose tissue. Peripheral clock genes maintained their robust oscillations with small shifts in their acrophases. Our data show that even a low level of ALAN can induce changes in the daily pattern of behavior and energy metabolism, and disturb daily rhythms of genes encoding key metabolic sensors and components of metabolic pathways in the liver and adipose tissue. Disturbed metabolic rhythms by ALAN could represent a serious risk factor for the development and progression of metabolic diseases.

6.
Neuroendocrinology ; 112(11): 1116-1128, 2022.
Article in English | MEDLINE | ID: mdl-35316813

ABSTRACT

AIMS: Our study addresses underlying mechanisms of disruption of the circadian timing system by low-intensity artificial light at night (ALAN), which is a growing global problem, associated with serious health consequences. METHODS: Rats were exposed to low-intensity (∼2 lx) ALAN for 2 weeks. Using in situ hybridization, we assessed 24-h profiles of clock and clock-controlled genes in the suprachiasmatic nuclei (SCN) and other hypothalamic regions, which receive input from the master clock. Moreover, we measured the daily rhythms of hormones within the main neuroendocrine axes as well as the detailed daily pattern of feeding and drinking behavior in metabolic cages. RESULTS: ALAN strongly suppressed the molecular clockwork in the SCN, as indicated by the suppressed rhythmicity in the clock (Per1, Per2, and Nr1d1) and clock output (arginine vasopressin) genes. ALAN disturbed rhythmic Per1 expression in the paraventricular and dorsomedial hypothalamic nuclei, which convey the circadian signals from the master clock to endocrine and behavioral rhythms. Disruption of hormonal output pathways was manifested by the suppressed and phase-advanced corticosterone rhythm and lost daily variations in plasma melatonin, testosterone, and vasopressin. Importantly, ALAN altered the daily profile in food and water intake and eliminated the clock-controlled surge of drinking 2 h prior to the onset of the rest period, indicating disturbed circadian control of anticipatory thirst and fluid balance during sleep. CONCLUSION: Our findings highlight compromised time-keeping function of the central clock and multiple circadian outputs, through which ALAN disturbs the temporal organization of physiology and behavior.


Subject(s)
Circadian Rhythm , Melatonin , Animals , Rats , Circadian Rhythm/genetics , Corticosterone/metabolism , Thirst , Light , Transcription Factors , Vasopressins , Arginine Vasopressin , Testosterone
7.
ACS Appl Mater Interfaces ; 14(4): 5066-5079, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35041392

ABSTRACT

Microglia are the major innate immune cells in the brain and are essential for maintaining homeostasis in a neuronal microenvironment. Currently, a genetic tool to modify microglial gene expression in specific brain regions is not available. In this report, we introduce a tailor-designed method that uses lipid and polymer hybridized nanoparticles (LPNPs) for the local delivery of small interfering RNAs (siRNAs), allowing the silencing of specific microglial genes in the hypothalamus. Our physical characterization proved that this LPNP-siRNA was uniform and stable. We demonstrated that, due to their natural phagocytic behavior, microglial cells are the dominant cell type taking up these LPNPs in the hypothalamus of rats. We then tested the silencing efficiency of LPNPs carrying a cluster of differentiation molecule 11b (CD11b) or Toll-like receptor 4 (TLR4) siRNA using different in vivo and in vitro approaches. In cultured microglial cells treated with LPNP-CD11b siRNA or LPNP-TLR4 siRNA, we found a silencing efficiency at protein expression levels of 65 or 77%, respectively. In line with this finding, immunohistochemistry and western blotting results from in vivo experiments showed that LPNP-CD11b siRNA significantly inhibited microglial CD11b protein expression in the hypothalamus. Furthermore, following lipopolysaccharide (LPS) stimulation of cultured microglial cells, gene expression of the TLR4 downstream signaling component myeloid differentiation factor 88 and its associated cytokines was significantly inhibited in LPNP-TLR4 siRNA-treated microglial cells compared with cells treated with LPNP-scrambled siRNA. Finally, after LPNP-TLR4 siRNA injection into the rat hypothalamus, we observed a significant reduction in microglial activation in response to LPS compared with the control rats injected with LPNP-scrambled siRNA. Our results indicate that LPNP-siRNA is a promising tool to manipulate microglial activity locally in the brain and may serve as a prophylactic approach to prevent microglial dysfunction-associated diseases.


Subject(s)
Drug Carriers/chemistry , Gene Expression/drug effects , Hypothalamus/drug effects , Microglia/drug effects , Nanoparticles/chemistry , RNA, Small Interfering/pharmacology , Animals , CD11b Antigen/antagonists & inhibitors , CD11b Antigen/genetics , Lipids/chemistry , Male , Polyesters/chemistry , Polyethylene Glycols/chemistry , Rats, Wistar , Toll-Like Receptor 4/antagonists & inhibitors , Toll-Like Receptor 4/genetics
8.
Mol Psychiatry ; 27(4): 2340-2354, 2022 04.
Article in English | MEDLINE | ID: mdl-35075269

ABSTRACT

The regulation of food intake, a sine qua non requirement for survival, thoroughly shapes feeding and energy balance by integrating both homeostatic and hedonic values of food. Unfortunately, the widespread access to palatable food has led to the development of feeding habits that are independent from metabolic needs. Among these, binge eating (BE) is characterized by uncontrolled voracious eating. While reward deficit seems to be a major contributor of BE, the physiological and molecular underpinnings of BE establishment remain elusive. Here, we combined a physiologically relevant BE mouse model with multiscale in vivo approaches to explore the functional connection between the gut-brain axis and the reward and homeostatic brain structures. Our results show that BE elicits compensatory adaptations requiring the gut-to-brain axis which, through the vagus nerve, relies on the permissive actions of peripheral endocannabinoids (eCBs) signaling. Selective inhibition of peripheral CB1 receptors resulted in a vagus-dependent increased hypothalamic activity, modified metabolic efficiency, and dampened activity of mesolimbic dopamine circuit, altogether leading to the suppression of palatable eating. We provide compelling evidence for a yet unappreciated physiological integrative mechanism by which variations of peripheral eCBs control the activity of the vagus nerve, thereby in turn gating the additive responses of both homeostatic and hedonic brain circuits which govern homeostatic and reward-driven feeding. In conclusion, we reveal that vagus-mediated eCBs/CB1R functions represent an interesting and innovative target to modulate energy balance and counteract food-reward disorders.


Subject(s)
Endocannabinoids , Reward , Animals , Brain/metabolism , Eating/physiology , Endocannabinoids/metabolism , Feeding Behavior/physiology , Homeostasis/physiology , Mice , Vagus Nerve/metabolism
9.
Chronobiol Int ; 38(9): 1354-1366, 2021 09.
Article in English | MEDLINE | ID: mdl-34058931

ABSTRACT

Obesity and type 2 diabetes mellitus are major health concerns worldwide. In obese-type 2 diabetic patients, the function of the central brain clock in the hypothalamus, as well as rhythmicity in white adipose tissue (WAT), are reduced. To better understand how peripheral clocks in white adipose tissue (WAT) are synchronized, we assessed the importance of the central brain clock for daily WAT rhythms. We compared gene expression rhythms of core clock genes (Bmal1, Per2, Cry1, Cry2, RevErbα, and DBP) and metabolic genes (SREBP1c, PPARα, PPARγ, FAS, LPL, HSL, CPT1b, Glut4, leptin, adiponectin, visfatin/NAMPT, and resistin) in epididymal and subcutaneous white adipose tissue (eWAT and sWAT) of SCN-lesioned and sham-lesioned rats housed in regular L/D conditions. Despite complete behavioral and hormonal arrhythmicity, SCN lesioning only abolished Cry2 and DBP rhythmicity in WAT, whereas the other clock gene rhythms were significantly reduced, but not completely abolished. We observed no major differences in the effect of SCN lesions between the two WAT depots. In contrast to clock genes, all metabolic genes lost their daily rhythmicity in WAT, with the exception of NAMPT. Interestingly, NAMPT rhythmicity was even less affected by SCN lesioning than the core clock genes, suggesting that it is either strongly coupled to the remaining rhythmicity in clock gene expression, or very sensitive to other external rhythmic factors. The L/D cycle could be such a rhythmic external factor that generates modulating signals by photic masking via the intrinsic photosensitive retinal ganglion cells in combination with the autonomic nervous system. Our findings indicate that in normal weight rats, gene expression rhythms in WAT can be maintained independent of the central brain clock.


Subject(s)
Circadian Rhythm , Diabetes Mellitus, Type 2 , Adipose Tissue, White , Animals , Circadian Rhythm/genetics , Diabetes Mellitus, Type 2/genetics , Gene Expression , Humans , Nicotinamide Phosphoribosyltransferase/genetics , Rats , Suprachiasmatic Nucleus
10.
J Neuroendocrinol ; 33(7): e12973, 2021 May 07.
Article in English | MEDLINE | ID: mdl-33960524

ABSTRACT

Kisspeptin (Kp) and (Arg)(Phe) related peptide 3 (RFRP-3) are two RF-amides acting in the hypothalamus to control reproduction. In the past 10 years, it has become clear that, apart from their role in reproductive physiology, both neuropeptides are also involved in the control of food intake, as well as glucose and energy metabolism. To investigate further the neural mechanisms responsible for these metabolic actions, we assessed the effect of acute i.c.v. administration of Kp or RFRP-3 in ad lib. fed male Wistar rats on feeding behaviour, glucose and energy metabolism, circulating hormones (luteinising hormone, testosterone, insulin and corticosterone) and hypothalamic neuronal activity. Kp increased plasma testosterone levels, had an anorexigenic effect and increased lipid catabolism, as attested by a decreased respiratory exchange ratio (RER). RFRP-3 also increased plasma testosterone levels but did not modify food intake or energy metabolism. Both RF-amides increased endogenous glucose production, yet with no change in plasma glucose levels, suggesting that these peptides provoke not only a release of hepatic glucose, but also a change in glucose utilisation. Finally, plasma insulin and corticosterone levels did not change after the RF-amide treatment. The Kp effects were associated with an increased c-Fos expression in the median preoptic area and a reduction in pro-opiomelanocortin immunostaining in the arcuate nucleus. No effects on neuronal activation were found for RFRP-3. Our results provide further evidence that Kp is not only a very potent hypothalamic activator of reproduction, but also part of the hypothalamic circuit controlling energy metabolism.

11.
Biomolecules ; 10(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708537

ABSTRACT

OBJECTIVE: Type 2 diabetes (T2D) occurs by deterioration in pancreatic ß-cell function and/or progressive loss of pancreatic ß-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. METHODS: We used an α7 nAChR knock-out (α7-/-) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. RESULTS: Young α7-/- mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in ß-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7-/- mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. CONCLUSION: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


Subject(s)
Glucose Intolerance/genetics , Hyperglycemia/genetics , Insulin Resistance , alpha7 Nicotinic Acetylcholine Receptor/genetics , Animals , Cell Line , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Female , Gene Deletion , Glucose/metabolism , Glucose Intolerance/metabolism , Hyperglycemia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Rats , alpha7 Nicotinic Acetylcholine Receptor/metabolism
12.
Obesity (Silver Spring) ; 28 Suppl 1: S81-S92, 2020 07.
Article in English | MEDLINE | ID: mdl-32475046

ABSTRACT

OBJECTIVE: Eating out of phase with the endogenous biological clock alters clock and metabolic gene expression in rodents and can induce obesity and type 2 diabetes mellitus. Diet composition can also affect clock gene expression. This study assessed the combined effect of diet composition and feeding time on (1) body composition, (2) energy balance, and (3) circadian expression of hepatic clock and metabolic genes. METHODS: Male Wistar rats were fed a chow or a free-choice high-fat, high-sugar (fcHFHS) diet, either ad libitum or with food access restricted to either the light or dark period. Body weight, adiposity, and hepatic fat accumulation as well as hepatic clock and metabolic mRNA expression were measured after 5 weeks of the diet. Energy expenditure was measured using calorimetric cages. RESULTS: Animals with access to the fcHFHS diet only during the light period showed more hepatic fat accumulation than fcHFHS dark-fed animals despite less calories consumed. In contrast, within the chow-fed groups, light-fed animals showed the lowest hepatic fat content, but they also showed the lowest caloric intake. Locomotor activity and heat production followed feeding times, except in the fcHFHS light-fed group. Hepatic clock and metabolic gene expression rhythms also followed timing of food intake. Yet, in the fcHFHS light-fed animals, clock gene expression appeared 3 hours advanced compared with chow light-fed animals, an effect not observed in the fcHFHS dark-fed animals. CONCLUSIONS: An fcHFHS diet consumed in the light period promotes hepatic fat accumulation and advances clock gene expression in male Wistar rats, likely because of a mismatch between energy intake and expenditure.


Subject(s)
Diet/methods , Fatty Liver/genetics , Fatty Liver/physiopathology , Feeding Behavior/physiology , Gene Expression/genetics , Animals , Disease Models, Animal , Male , Rats , Rats, Wistar
13.
Cell Rep ; 30(9): 3067-3078.e5, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32130907

ABSTRACT

Mechanistic studies in rodents evidenced synaptic remodeling in neuronal circuits that control food intake. However, the physiological relevance of this process is not well defined. Here, we show that the firing activity of anorexigenic POMC neurons located in the hypothalamus is increased after a standard meal. Postprandial hyperactivity of POMC neurons relies on synaptic plasticity that engages pre-synaptic mechanisms, which does not involve structural remodeling of synapses but retraction of glial coverage. These functional and morphological neuroglial changes are triggered by postprandial hyperglycemia. Chemogenetically induced glial retraction on POMC neurons is sufficient to increase POMC activity and modify meal patterns. These findings indicate that synaptic plasticity within the melanocortin system happens at the timescale of meals and likely contributes to short-term control of food intake. Interestingly, these effects are lost with a high-fat meal, suggesting that neuroglial plasticity of POMC neurons is involved in the satietogenic properties of foods.


Subject(s)
Hyperglycemia/physiopathology , Hypothalamus/metabolism , Meals , Neuroglia/pathology , Neuronal Plasticity , Neurons/metabolism , Pro-Opiomelanocortin/metabolism , Animals , Blood Glucose/metabolism , Electrophysiological Phenomena , Feeding Behavior , Hyperglycemia/blood , Mice, Inbred C57BL , Mice, Transgenic , Postprandial Period , Synapses/metabolism
14.
Mol Metab ; 29: 182-196, 2019 11.
Article in English | MEDLINE | ID: mdl-31668389

ABSTRACT

OBJECTIVE: Prokineticin 2 (PROK2) is a hypothalamic neuropeptide that plays a critical role in the rhythmicity of physiological functions and inhibits food intake. PROK2 is also expressed in the main olfactory bulb (MOB) as an essential factor for neuro-and morphogenesis. Since the MOB was shown to be strongly involved in eating behavior, we hypothesized that PROK2 could be a new target in the regulation of food intake and energy homeostasis, through its effects in the MOB. We also asked whether PROK2 could be associated with the pathophysiology of obesity, the metabolic syndrome (MetS), and type 2 diabetes (T2D) in humans. METHODS: We assessed in wild type mice whether the expression of Prok2 in the MOB is dependent on the nutritional status. We measured the effect of human recombinant PROK2 (rPROK2) acute injection in the MOB on food intake and olfactory behavior. Then, using a lentivirus expressing Prok2-shRNA, we studied the effects of Prok2 underexpression in the MOB on feeding behavior and glucose metabolism. Metabolic parameters and meal pattern were determined using calorimetric cages. In vivo 2-deoxyglucose uptake measurements were performed in mice after intraperitoneally insulin injection. Plasmatic PROK2 dosages and genetic associations studies were carried out respectively on 148 and more than 4000 participants from the D.E.S.I.R. (Data from an Epidemiologic Study on the Insulin Resistance Syndrome) cohort. RESULTS: Our findings showed that fasting in mice reduced Prok2 expression in the MOB. Acute injection of rPROK2 in the MOB significantly decreased food intake whereas Prok2-shRNA injection resulted in a higher dietary consumption characterized by increased feeding frequency and decreased meal size. Additionally, Prok2 underexpression in the MOB induced insulin resistance compared to scrambled shRNA-injected mice. In the human D.E.S.I.R. cohort, we found a significantly lower mean concentration of plasma PROK2 in people with T2D than in those with normoglycemia. Interestingly, this decrease was no longer significant when adjusted for Body Mass Index (BMI) or calorie intake, suggesting that the association between plasma PROK2 and diabetes is mediated, at least partly, by BMI and feeding behavior in humans. Moreover, common Single Nucleotide Polymorphisms (SNPs) in PROK2 gene were genotyped and associated with incident T2D or impaired fasting glycemia (IFG), MetS, and obesity. CONCLUSIONS: Our data highlight PROK2 as a new target in the MOB that links olfaction with eating behavior and energy homeostasis. In humans, plasma PROK2 is negatively correlated with T2D, BMI, and energy intake, and PROK2 genetic variants are associated with incident hyperglycemia (T2D/IFG), the MetS and obesity.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Feeding Behavior , Gastrointestinal Hormones/metabolism , Insulin Resistance , Neuropeptides/metabolism , Adult , Aged , Animals , Diabetes Mellitus, Type 2/metabolism , Eating/drug effects , Energy Metabolism/drug effects , Feeding Behavior/drug effects , Female , Gastrointestinal Hormones/antagonists & inhibitors , Gastrointestinal Hormones/blood , Gastrointestinal Hormones/genetics , Humans , Male , Mice , Middle Aged , Neuropeptides/antagonists & inhibitors , Neuropeptides/blood , Neuropeptides/genetics , Olfactory Bulb/metabolism , Polymorphism, Single Nucleotide , RNA Interference , RNA, Small Interfering/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/pharmacology
15.
Diabetes ; 68(12): 2223-2234, 2019 12.
Article in English | MEDLINE | ID: mdl-31578192

ABSTRACT

Obesity is taking on worldwide epidemic proportions, yet effective pharmacological agents with long-term efficacy remain unavailable. Previously, we designed the iminosugar N-adamantine-methyloxypentyl-deoxynojirimycin (AMP-DNM), which potently improves glucose homeostasis by lowering excessive glycosphingolipids. Here we show that AMP-DNM promotes satiety and activates brown adipose tissue (BAT) in obese rodents. Moreover, we demonstrate that the mechanism mediating these favorable actions depends on oral, but not central, administration of AMP-DNM, which ultimately stimulates systemic glucagon-like peptide 1 (GLP1) secretion. We evidence an essential role of brain GLP1 receptors (GLP1r), as AMP-DNM fails to promote satiety and activate BAT in mice lacking the brain GLP1r as well as in mice treated intracerebroventricularly with GLP1r antagonist exendin-9. In conclusion, AMP-DNM markedly ameliorates metabolic abnormalities in obese rodents by restoring satiety and activating BAT through central GLP1r, while improving glucose homeostasis by mechanisms independent of central GLP1r.


Subject(s)
1-Deoxynojirimycin/analogs & derivatives , Adamantane/analogs & derivatives , Adipose Tissue, Brown/drug effects , Glucagon-Like Peptide 1/physiology , Satiation/drug effects , 1-Deoxynojirimycin/pharmacology , Adamantane/pharmacology , Animals , Brain/drug effects , Brain/physiology , Glucose/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Obesity/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
16.
Article in English | MEDLINE | ID: mdl-31496992

ABSTRACT

Epidemiological studies indicate that shift-workers have an increased risk of type 2 diabetes mellitus (T2DM). Glucose tolerance and insulin sensitivity both are dependent on the circadian timing system (i.e., the time-of-day) and fasting duration, in rodents as well as humans. Therefore, question is whether manipulation of the circadian timing system, for example by changing the timing of feeding and fasting, is a potential preventive treatment for T2DM. Time-restricted feeding (TRF) is well-known to have profound effects on various metabolic measures, including glucose metabolism. However, experiments that directly measure the effects of TRF on glucose tolerance and/or insulin sensitivity at different time points throughout the 24 h cycle are lacking. Here we show, in rats, that TRF in line with the circadian timing system (i.e., feeding during the active phase) improves glucose tolerance during intravenous glucose tolerance tests (ivGTT) in the active phase, as lower insulin levels were observed with similar levels of glucose clearance. However, this was not the case during the inactive phase in which more insulin was released but only a slightly faster glucose clearance was observed. Contrasting, TRF out of sync with the circadian timing system (i.e., feeding during the inactive phase) worsened glucose tolerance, although only marginally, likely because of adaptation to the 4 week TRF regimen. Our results show that TRF can improve glucose metabolism, but strict adherence to the time-restricted feeding period is necessary, as outside the regular eating hours glucose tolerance is worsened.

17.
Front Neurosci ; 13: 647, 2019.
Article in English | MEDLINE | ID: mdl-31281239

ABSTRACT

Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected. Conclusion: One-hour light-at-night acutely affects the liver transcriptome. Part of this effect is mediated via the nervous innervation, as a hepatectomy modulated and reduced the effect of LAN on liver transcripts.

18.
Int J Mol Sci ; 19(10)2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30326619

ABSTRACT

Restricted feeding is well known to affect expression profiles of both clock and metabolic genes. However, it is unknown whether these changes in metabolic gene expression result from changes in the molecular clock or in feeding behavior. Here we eliminated the daily rhythm in feeding behavior by providing 6 meals evenly distributed over the light/dark-cycle. Animals on this 6-meals-a-day feeding schedule retained the normal day/night difference in physiological parameters including body temperature and locomotor activity. The daily rhythm in respiratory exchange ratio (RER), however, was significantly phase-shifted through increased utilization of carbohydrates during the light phase and increased lipid oxidation during the dark phase. This 6-meals-a-day feeding schedule did not have a major impact on the clock gene expression rhythms in the master clock, but did have mild effects on peripheral clocks. In contrast, genes involved in glucose and lipid metabolism showed differential expression. In conclusion, eliminating the daily rhythm in feeding behavior in rats does not affect the master clock and only mildly affects peripheral clocks, but disturbs metabolic rhythms in liver, skeletal muscle and brown adipose tissue in a tissue-dependent manner. Thereby, a clear daily rhythm in feeding behavior strongly regulates timing of peripheral metabolism, separately from circadian clocks.


Subject(s)
Adipose Tissue, Brown/metabolism , Circadian Clocks/genetics , Energy Metabolism/genetics , Feeding Behavior , Liver/metabolism , Muscle, Skeletal/metabolism , Analysis of Variance , Animals , Body Temperature , Body Weight , Energy Intake , Gene Expression , Locomotion , Rats
19.
Neuroendocrinology ; 107(3): 267-279, 2018.
Article in English | MEDLINE | ID: mdl-30092582

ABSTRACT

BACKGROUND: Cold exposure increases thyrotropin-releasing hormone (TRH) expression primarily in the hypothalamic paraventricular nucleus (PVN). The PVN is a well-known hypothalamic hub in the control of energy metabolism. TRH terminals and receptors are found on PVN neurons. We hypothesized that TRH release in the PVN plays an important role in the control of thermogenesis and energy mobilization during cold exposure. METHODS: Male Wistar rats were exposed to a cold environment (4°C) or TRH retrodialysis in the PVN for 2 h. We compared the effects of cold exposure and TRH administration in the PVN on plasma glucose, corticosterone, and thyroid hormone concentrations, body temperature, locomotor activity, as well as metabolic gene expression in the liver and brown adipose tissue. RESULTS: Cold exposure increased body temperature, locomotor activity, and plasma corticosterone concentrations, but blood glucose concentrations were similar to that of room temperature control animals. TRH administration in the PVN also promptly increased body temperature, locomotor activity and plasma corticosterone concentrations. However, TRH administration in the PVN markedly increased blood glucose concentrations and endogenous glucose production (EGP) compared to saline controls. Selective hepatic sympathetic or parasympathetic denervation reduced the TRH-induced increase in glucose concentrations and EGP. Gene expression data indicated increased gluconeogenesis in liver and lipolysis in brown adipose tissue, both after cold exposure and TRH administration. CONCLUSIONS: We conclude that TRH administration in the rat PVN largely mimics the metabolic and behavioral changes induced by cold exposure indicating a potential link between TRH release in the PVN and cold defense.


Subject(s)
Body Temperature/drug effects , Motor Activity/drug effects , Paraventricular Hypothalamic Nucleus/drug effects , Thermogenesis/drug effects , Thyrotropin-Releasing Hormone/pharmacology , Animals , Blood Glucose , Body Temperature/physiology , Cold Temperature , Corticosterone/blood , Male , Motor Activity/physiology , Rats , Rats, Wistar , Thermogenesis/physiology , Thyroid Hormones/blood
20.
Article in English | MEDLINE | ID: mdl-29755411

ABSTRACT

BACKGROUND: Daily cyclic changes in environmental conditions are key signals for anticipatory and adaptive adjustments of most living species, including mammals. Lower ambient temperature stimulates the thermogenic activity of brown adipose tissue (BAT) and skeletal muscle. Given that the molecular components of the endogenous biological clock interact with thermal and metabolic mechanisms directly involved in the defense of body temperature, the present study evaluated the differential homeostatic responses to a cold stimulus at distinct time-windows of the light/dark-cycle. METHODS: Male Wistar rats were subjected to a single episode of 3 h cold ambient temperature (4°C) at one of 6 time-points starting at Zeitgeber Times 3, 7, 11, 15, 19, and 23. Metabolic rate, core body temperature, locomotor activity (LA), feeding, and drinking behaviors were recorded during control and cold conditions at each time-point. Immediately after the stimulus, rats were euthanized and both the soleus and BAT were collected for real-time PCR. RESULTS: During the light phase (i.e., inactive phase), cold exposure resulted in a slight hyperthermia (p < 0.001). Light phase cold exposure also increased metabolic rate and LA (p < 0.001). In addition, the prevalence of fat oxidative metabolism was attenuated during the inactive phase (p < 0.001). These metabolic changes were accompanied by time-of-day and tissue-specific changes in core clock gene expression, such as DBP (p < 0.0001) and REV-ERBα (p < 0.01) in the BAT and CLOCK (p < 0.05), PER2 (p < 0.05), CRY1 (p < 0.05), CRY2 (p < 0.01), and REV-ERBα (p < 0.05) in the soleus skeletal muscle. Moreover, genes involved in substrate oxidation and thermogenesis were affected in a time-of-day and tissue-specific manner by cold exposure. CONCLUSION: The time-of-day modulation of substrate mobilization and oxidation during cold exposure provides a clear example of the circadian modulation of physiological and metabolic responses. Interestingly, after cold exposure, time-of-day mostly affected circadian clock gene expression in the soleus muscle, despite comparable changes in LA over the light-dark-cycle. The current findings add further evidence for tissue-specific actions of the internal clock in different peripheral organs such as skeletal muscle and BAT.

SELECTION OF CITATIONS
SEARCH DETAIL
...