Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
J Neurosci Methods ; 410: 110225, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053772

ABSTRACT

BACKGROUND: The study of neurons is fundamental to unraveling the complexities of the nervous system. Primary neuronal cultures from rodents have long been a cornerstone of experimental studies, yet limitations related to their non-human nature and ethical concerns have prompted the development of alternatives. In recent years, the derivation of neurons from human-induced pluripotent stem cells (hiPSCs) has emerged as a powerful option, offering a scalable source of cells for diverse applications. Neural progenitor cells (NPCs) derived from hiPSCs can be efficiently differentiated into functional neurons, providing a platform to study human neural physiology and pathology in vitro. However, challenges persist in achieving consistent and reproducible outcomes across experimental settings. COMPARISON WITH EXISTING METHODS: Our aim is to provide a step-by-step methodological protocol, augmenting existing procedures with additional instructions and parameters, to guide researchers in achieving reproducible results. METHODS AND RESULTS: We outline procedures for the differentiation of hiPSC-derived NPCs into electrically competent neurons, encompassing initial cell density, morphology, maintenance, and differentiation. We also describe the analysis of specific markers for assessing neuronal phenotype, along with electrophysiological analysis to evaluate biophysical properties of neuronal excitability. Additionally, we conduct a comparative analysis of three different chemical methods-KCl, N-methyl-D-aspartate (NMDA), and bicuculline-to induce neuronal depolarization and assess their effects on the induction of both fast and slow post-translational, transcriptional, and post-transcriptional responses. CONCLUSION: Our protocol provides clear instructions for generating reliable human neuronal cultures with defined electrophysiological properties to investigate neuronal differentiation and model diseases in vitro.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Neural Stem Cells , Neurons , Humans , Neurons/physiology , Neurons/cytology , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Cell Differentiation/physiology , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Cells, Cultured , Cell Culture Techniques/methods , Electrophysiological Phenomena/physiology
2.
iScience ; 25(7): 104665, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35856020

ABSTRACT

The histone demethylase KDM1A is a multi-faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A-/- hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a-/- hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.

3.
J Neurosci ; 42(18): 3689-3703, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35351830

ABSTRACT

Recent branching (100 MYA) of the mammalian evolutionary tree has enhanced brain complexity and functions at the putative cost of increased emotional circuitry vulnerability. Thus, to better understand psychopathology, a burden for the modern society, novel approaches should exploit evolutionary aspects of psychiatric-relevant molecular pathways. A handful of genes is nowadays tightly associated to psychiatric disorders. Among them, neuronal-enriched RbFOX1 modifies the activity of synaptic regulators in response to neuronal activity, keeping excitability within healthy domains. We here dissect a higher primates-restricted interaction between RbFOX1 and the transcriptional corepressor Lysine Specific Demethylase 1 (LSD1/KDM1A). A single nucleotide variation (AA to AG) in LSD1 gene appeared in higher primates and humans, endowing RbFOX1 with the ability to promote the alternative usage of a novel 3' AG splice site, which extends LSD1 exon E9 in the upstream intron (E9-long). Exon E9-long regulates LSD1 levels by Nonsense-Mediated mRNA Decay. As reintroduction of the archaic LSD1 variant (AA) abolishes E9-long splicing, the novel 3' AG splice site is necessary for RbFOX1 to control LSD1 levels. LSD1 is a homeostatic immediate early genes (IEGs) regulator playing a relevant part in environmental stress-response. In primates and humans, inclusion of LSD1 as RbFOX1 target provides RbFOX1 with the additional ability to regulate the IEGs. These data, together with extensive RbFOX1 involvement in psychiatric disorders and its stress-dependent regulation in male mice, suggest the RbFOX1-LSD1-IEGs axis as an evolutionary recent psychiatric-relevant pathway. Notably, outside the nervous system, RbFOX2-dependent LSD1 modulation could be a candidate deregulated mechanism in cancer.SIGNIFICANCE STATEMENT To be better understood, anxiety and depression need large human genetics studies aimed at further resolving the often ambiguous, aberrant neuronal pathomechanisms that impact corticolimbic circuitry physiology. Several genetic associations of the alternative splicing regulator RbFOX1 with psychiatric conditions suggest homeostatic unbalance as a neuronal signature of psychopathology. Here we move a step forward, characterizing a disease-relevant higher primates-specific pathway by which RbFOX1 acquires the ability to regulate neuronal levels of Lysine Specific Demethylase 1, an epigenetic modulator of environmental stress response. Thus, two brain-enriched enzymes, independently shown to homeostatically protect neurons with a clear readout in terms of emotional behavior in lower mammals, establish in higher primates and humans a new functional cooperation enhancing the complexity of environmental adaptation and stress vulnerability.


Subject(s)
Alternative Splicing , Lysine , Alternative Splicing/genetics , Animals , Brain/metabolism , Histone Demethylases/genetics , Humans , Lysine/metabolism , Male , Mammals , Mice , Primates , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , Repressor Proteins/genetics
4.
Int J Mol Sci ; 21(20)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050350

ABSTRACT

Emotional and cognitive information processing represent higher-order brain functions. They require coordinated interaction of specialized brain areas via a complex spatial and temporal equilibrium among neuronal cell-autonomous, circuitry, and network mechanisms. The delicate balance can be corrupted by stressful experiences, increasing the risk of developing psychopathologies in vulnerable individuals. Neuropsychiatric disorders affect twenty percent of the western world population, but therapies are still not effective for some patients. Elusive knowledge of molecular pathomechanisms and scarcity of objective biomarkers in humans present complex challenges, while the adoption of rodent models helps to improve our understanding of disease correlate and aids the search for novel pharmacological targets. Stress administration represents a strategy to induce, trace, and modify molecular and behavioral endophenotypes of mood disorders in animals. However, a mouse or rat model will only display one or a few endophenotypes of a specific human psychopathology, which cannot be in any case recapitulated as a whole. To override this issue, shared criteria have been adopted to deconstruct neuropsychiatric disorders, i.e., depression, into specific behavioral aspects, and inherent neurobiological substrates, also recognizable in lower mammals. In this work, we provide a rationale for rodent models of stress administration. In particular, comparing each rodent model with a real-life human traumatic experience, we intend to suggest an introductive guide to better comprehend and interpret these paradigms.


Subject(s)
Mental Disorders/etiology , Stress, Physiological , Stress, Psychological/complications , Animals , Disease Management , Disease Models, Animal , Disease Susceptibility , Environment , Humans , Mental Disorders/diagnosis , Mental Disorders/therapy , Prognosis , Research
5.
J Neurochem ; 155(1): 98-110, 2020 10.
Article in English | MEDLINE | ID: mdl-32141088

ABSTRACT

Acute environmental stress rarely implies long-lasting neurophysiological and behavioral alterations. On the contrary, chronic stress exerts a potent toxic effect at the glutamatergic synapse whose altered physiology has been recognized as a core trait of neuropsychiatric disorders. The endocannabinoid system (ECS) plays an important role in the homeostatic response to acute stress. In particular, stress induces synthesis of endocannabinoid (eCB) 2-arachidonyl glycerol (2-AG). 2-AG stimulates presynaptic cannabinoid 1 (CB1) receptor contributing to stress response termination through inhibition of glutamate release, restraining thereafter anxiety arousal. We employ mouse models of stress response coupled to gene expression analyses, unravelling that in response to acute psychosocial stress in the mouse hippocampus, ECS-mediated synaptic modulation is enhanced via transcriptional repression of two enzymes involved in 2-AG degradation: α/ß-hydrolase domain containing 6 (ABHD6) and monoacylglycerol lipase (MAGL). Such a process is orchestrated by the epigenetic corepressor LSD1 who directly interacts with promoter regulatory regions of Abhd6 and Magl. Remarkably, negative transcriptional control of Abhd6 and Magl is lost in the hippocampus upon chronic psychosocial stress, possibly contributing to trauma-induced drift of synapse physiology toward uncontrolled glutamate transmission. We previously showed that in mice lysine-specific demethylase 1 (LSD1) increases its hippocampal expression in response to psychosocial stress preventing excessive consolidation of anxiety-related plasticity. In this work, we unravel a nodal epigenetic modulation of eCB turn over, shedding new light on the molecular substrate of converging stress-terminating effects displayed by ECS and LSD1.


Subject(s)
Endocannabinoids/physiology , Histone Demethylases/metabolism , Stress Disorders, Traumatic, Acute/physiopathology , Animals , Arachidonic Acids/pharmacology , Endocannabinoids/pharmacology , Epigenetic Repression , Gene Expression Regulation , Glycerides/pharmacology , Hippocampus/metabolism , Histone Demethylases/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monoacylglycerol Lipases/biosynthesis , Monoacylglycerol Lipases/genetics , Receptor, Cannabinoid, CB1/agonists , Social Environment , Stress, Psychological
6.
Mol Neurobiol ; 57(1): 393-407, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31364026

ABSTRACT

Ten to 20% of western countries population suffers from major depression disorder (MDD). Stressful life events represent the main environmental risk factor contributing to the onset of MDD and other stress-related neuropsychiatric disorders. In this regard, investigating brain physiology of stress response underlying the remarkable individual variability in terms of behavioral outcome may uncover stress-vulnerability pathways as a source of candidate targets for conceptually new antidepressant treatments. Serum response factor (SRF) has been addressed as a stress transducer via promoting inherent experience-induced Immediate Early Genes (IEGs) expression in neurons. However, in resting conditions, SRF also represents a transcriptional repressor able to assemble the core LSD1/CoREST/HDAC2 corepressor complex, including demethylase and deacetylase activities. We here show that dominant negative SRF splicing isoform lacking most part of the transactivation domain, namely SRFΔ5, owes its transcriptional repressive behavior to the ability of assembling LSD1/CoREST/HDAC2 corepressor complex meanwhile losing its affinity for transcription-permissive cofactor ELK1. SRFΔ5 is highly expressed in the brain and developmentally regulated. In the light of its activity as negative modulator of dendritic spine density, SRFΔ5 increase along with brain maturation suggests a role in synaptic pruning. Upon acute psychosocial stress, SRFΔ5 isoform transiently increases its levels. Remarkably, when stress is chronically repeated, a different picture occurs where SRF protein becomes stably upregulated in vulnerable mice but not in resilient animals. These data suggest a role for SRFΔ5 that is restricted to acute stress response, while positive modulation of SRF during chronic stress matches the criteria for stress-vulnerability hallmark.


Subject(s)
Alternative Splicing/genetics , Co-Repressor Proteins/metabolism , Histone Demethylases/metabolism , Neuronal Plasticity , Serum Response Factor/genetics , Stress, Physiological , Animals , Cell Shape , Dendritic Spines/metabolism , HeLa Cells , Hippocampus/metabolism , Histone Deacetylase 2/metabolism , Humans , Mice, Inbred C57BL , Protein Binding , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Serum Response Factor/metabolism , Stress, Psychological/pathology
SELECTION OF CITATIONS
SEARCH DETAIL