Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biophys Chem ; 300: 107073, 2023 09.
Article in English | MEDLINE | ID: mdl-37413816

ABSTRACT

Aggregation of Aß peptides is a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, monomeric Aß is susceptible to conformational excursions, especially in the presence of important interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles do carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aß N-terminal region modulate oligomerization of Aß temporally, and dictate the stability and maturation of oligomers. These results demonstrate the selectivity of sugar distributions on the membrane surface toward oligomerization of Aß and thus implicate cell-selective enrichment of oligomers.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Amyloid beta-Peptides/chemistry , Sugars , Gangliosides/chemistry , Gangliosides/metabolism , Alzheimer Disease/metabolism , Protein Binding , Peptide Fragments/chemistry
2.
bioRxiv ; 2023 May 10.
Article in English | MEDLINE | ID: mdl-37214891

ABSTRACT

Aggregation of Aß peptides has been known as a key contributor to the etiology of Alzheimer's disease. Being intrinsically disordered, the monomeric Aß is susceptible to conformational excursions, especially in the presence of key interacting partners such as membrane lipids, to adopt specific aggregation pathways. Furthermore, key components such as gangliosides in membranes and lipid rafts are known to play important roles in the adoption of pathways and the generation of discrete neurotoxic oligomers. Yet, what roles the carbohydrates on gangliosides play in this process remains unknown. Here, using GM1, GM3, and GD3 ganglioside micelles as models, we show that the sugar distributions and cationic amino acids within Aß N-terminal region modulate oligomerization of Aß temporally, and dictate the stability and maturation of oligomers.

SELECTION OF CITATIONS
SEARCH DETAIL