Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Scand J Pain ; 21(2): 217-237, 2021 04 27.
Article in English | MEDLINE | ID: mdl-34387953

ABSTRACT

OBJECTIVES: Experimental pain is a commonly used method to draw conclusions about the motor response to clinical musculoskeletal pain. A systematic review was performed to determine if current models of acute experimental pain validly replicate the clinical experience of appendicular musculoskeletal pain with respect to the distribution and quality of pain and the pain response to provocation testing. METHODS: A structured search of Medline, Scopus and Embase databases was conducted from database inception to August 2020 using the following key terms: "experimental muscle pain" OR "experimental pain" OR "pain induced" OR "induced pain" OR "muscle hyperalgesia" OR ("Pain model" AND "muscle"). Studies in English were included if investigators induced experimental musculoskeletal pain into a limb (including the sacroiliac joint) in humans, and if they measured and reported the distribution of pain, quality of pain or response to a provocation manoeuvre performed passively or actively. Studies were excluded if they involved prolonged or delayed experimental pain, if temporomandibular, orofacial, lumbar, thoracic or cervical spine pain were investigated, if a full text of the study was not available or if they were systematic reviews. Two investigators independently screened each title and abstract and each full text paper to determine inclusion in the review. Disagreements were resolved by consensus with a third investigator. RESULTS: Data from 57 experimental pain studies were included in this review. Forty-six of these studies reported pain distribution, 41 reported pain quality and six detailed the pain response to provocation testing. Hypertonic saline injection was the most common mechanism used to induce pain with 43 studies employing this method. The next most common methods were capsaicin injection (5 studies) and electrical stimulation, injection of acidic solution and ischaemia with three studies each. The distribution of experimental pain was similar to the area of pain reported in clinical appendicular musculoskeletal conditions. The quality of appendicular musculoskeletal pain was not replicated with the affective component of the McGill Pain Questionnaire consistently lower than that typically reported by musculoskeletal pain patients. The response to provocation testing was rarely investigated following experimental pain induction. Based on the limited available data, the increase in pain experienced in clinical populations during provocative maneuvers was not consistently replicated. CONCLUSIONS: Current acute experimental pain models replicate the distribution but not the quality of chronic clinical appendicular musculoskeletal pain. Limited evidence also indicates that experimentally induced acute pain does not consistently increase with tests known to provoke pain in patients with appendicular musculoskeletal pain. The results of this review question the validity of conclusions drawn from acute experimental pain studies regarding changes in muscle behaviour in response to pain in the clinical setting.


Subject(s)
Acute Pain , Chronic Pain , Musculoskeletal Pain , Abdominal Pain , Humans , Pain Measurement
2.
Scand J Pain ; 20(1): 167-174, 2019 12 18.
Article in English | MEDLINE | ID: mdl-31444968

ABSTRACT

Background and aims People with shoulder pain often present with abnormal shoulder muscle function. It is not known whether shoulder pain causes or is the result of muscle dysfunction. If pain leads to muscle dysfunction, therapeutic interventions that produce shoulder pain may be contraindicated. Experimentally induced nociception can be used to investigate a causal relationship between shoulder pain and muscle dysfunction. However, the validity of current experimental shoulder pain protocols has not been established. The aim of this study was to determine whether current experimental shoulder pain protocols validly replicate the clinical experience of shoulder pain with respect to pain distribution, quality and behaviour. Methods Nine pain free participants received two injections of hypertonic saline, one into the subacromial space and one into supraspinatus, in random order, at least 1 week apart. Investigators blind to the injection site assessed pain distribution, pain response to clinical tests which provoke shoulder pain and pain quality assessed using the McGill Pain Questionnaire. Results Following hypertonic saline injection into both the subacromial space and supraspinatus: pain was most commonly reported in the deltoid region and did not extend beyond the elbow; the most common response to clinical tests which provoke shoulder pain was a decrease in pain; and the highest rating of pain quality was in the sensory domain with very few responses in the affective domain. Conclusions Experimental shoulder pain induced by injection of hypertonic saline into either the subacromial space or supraspinatus produced a pain distribution similar to that observed in clinical shoulder pain, but neither experimental pain protocol could reproduce the increases in pain intensity following shoulder provocation tests or the emotional distress commonly observed in people with clinical shoulder pain. Implications Pain induced by local shoulder nociception produced by hypertonic saline injection into shoulder structures has significant limitations as a model of clinical shoulder pain. While it is perhaps unsurprising that short duration, chemically-induced experimental pain does not replicate the quality of the clinical experience of shoulder pain, the validity of experimental shoulder pain models which produce the opposite response to provocation testing to clinical shoulder pain must be questioned.


Subject(s)
Range of Motion, Articular/drug effects , Rotator Cuff/drug effects , Saline Solution, Hypertonic/administration & dosage , Shoulder Pain , Humans , Injections, Intra-Articular , Nociception , Pain Measurement , Shoulder Pain/chemically induced , Shoulder Pain/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL