Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Chem ; 66(23): 15801-15822, 2023 12 14.
Article in English | MEDLINE | ID: mdl-38048437

ABSTRACT

Schistosomiasis is a disease affecting >200 million people worldwide, but its treatment relies on a single agent, praziquantel. To investigate new avenues for schistosomiasis control, we have conducted the first systematic analysis of bromodomain-containing proteins (BCPs) in a causative species, Schistosoma mansoni. Having identified 29 putative bromodomains (BRDs) in 22 S. mansoni proteins, we selected SmBRD3, a tandem BRD-containing BCP that shows high similarity to the human bromodomain and extra terminal domain (BET) family, for further studies. Screening 697 small molecules identified the human BET BRD inhibitor I-BET726 as a ligand for SmBRD3. An X-ray crystal structure of I-BET726 bound to the second BRD of SmBRD3 [SmBRD3(2)] enabled rational design of a quinoline-based ligand (15) with an ITC Kd = 364 ± 26.3 nM for SmBRD3(2). The ethyl ester pro-drug of compound 15 (compound 22) shows substantial effects on sexually immature larval schistosomula, sexually mature adult worms, and snail-infective miracidia in ex vivo assays.


Subject(s)
Schistosomiasis mansoni , Schistosomiasis , Animals , Female , Humans , Schistosoma mansoni , Oviposition , Ligands , Schistosomiasis mansoni/drug therapy
2.
Pharmaceutics ; 15(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37514055

ABSTRACT

Infection with Fasciola hepatica (liver fluke) causes fasciolosis (or fascioliasis) and poses a considerable economic as well as welfare burden to both the agricultural and animal health sectors. Here, we explore the ex vivo anthelmintic potential of synthetic derivatives of hederagenin, isolated in bulk from Hedera helix. Thirty-six compounds were initially screened against F. hepatica newly excysted juveniles (NEJs) of the Italian strain. Eleven of these compounds were active against NEJs and were selected for further study, using adult F. hepatica derived from a local abattoir (provenance unknown). From these eleven compounds, six demonstrated activity and were further assessed against immature liver flukes of the Italian strain. Subsequently, the most active compounds (n = 5) were further evaluated in ex vivo dose response experiments against adult Italian strain liver flukes. Overall, MC042 was identified as the most active molecule and the EC50 obtained from immature and adult liver fluke assays (at 24 h post co-culture) are estimated as 1.07 µM and 13.02 µM, respectively. When compared to the in vitro cytotoxicity of MDBK bovine cell line, MC042 demonstrated the highest anthelmintic selectivity (44.37 for immature and 3.64 for adult flukes). These data indicate that modified hederagenins display properties suitable for further investigations as candidate flukicides.

3.
Wellcome Open Res ; 8: 146, 2023.
Article in English | MEDLINE | ID: mdl-37520936

ABSTRACT

Background: Schistosoma mansoni, a parasitic worm species responsible for the neglected tropical disease schistosomiasis, undergoes strict developmental regulation of gene expression that is carefully controlled by both genetic and epigenetic processes. As inhibition of S. mansoni epigenetic machinery components impairs key transitions throughout the parasite's digenetic lifecycle, a greater understanding of how epi-drugs affect molecular processes in schistosomes could lead to the development of new anthelmintics. Methods:   In vitro whole organism assays were used to assess the anti-schistosomal activity of 39 Homo sapiens Lysine Specific Demethylase 1 (HsLSD1) inhibitors on different parasite life cycle stages. Moreover, tissue-specific stains and genomic analysis shed light on the effect of these small molecules on the parasite biology. Results: Amongst this collection of small molecules, compound 33 was the most potent in reducing ex vivo viabilities of schistosomula, juveniles, miracidia and adults. At its sub-lethal concentration to adults (3.13 µM), compound 33 also significantly impacted oviposition, ovarian as well as vitellarian architecture and gonadal/neoblast stem cell proliferation. ATAC-seq analysis of adults demonstrated that compound 33 significantly affected chromatin structure (intragenic regions > intergenic regions), especially in genes differentially expressed in cell populations (e.g., germinal stem cells, hes2 + stem cell progeny, S1 cells and late female germinal cells) associated with these ex vivo phenotypes. KEGG analyses further highlighted that chromatin structure of genes associated with sugar metabolism as well as TGF-beta and Wnt signalling were also significantly perturbed by compound 33 treatment. Conclusions: This work confirms the importance of histone methylation in S. mansoni lifecycle transitions, suggesting that evaluation of LSD1 - targeting epi-drugs may facilitate the search for next-generation anti-schistosomal drugs. The ability of compound 33 to modulate chromatin structure as well as inhibit parasite survival, oviposition and stem cell proliferation warrants further investigations of this compound and its epigenetic target SmLSD1.

4.
Pharmaceutics ; 15(5)2023 Apr 28.
Article in English | MEDLINE | ID: mdl-37242601

ABSTRACT

Schistosomiasis is one of the most important neglected tropical diseases. Until an effective vaccine is registered for use, the cornerstone of schistosomiasis control remains chemotherapy with praziquantel. The sustainability of this strategy is at substantial risk due to the possibility of praziquantel insensitive/resistant schistosomes developing. Considerable time and effort could be saved in the schistosome drug discovery pipeline if available functional genomics, bioinformatics, cheminformatics and phenotypic resources are systematically leveraged. Our approach, described here, outlines how schistosome-specific resources/methodologies, coupled to the open-access drug discovery database ChEMBL, can be cooperatively used to accelerate early-stage, schistosome drug discovery efforts. Our process identified seven compounds (fimepinostat, trichostatin A, NVP-BEP800, luminespib, epoxomicin, CGP60474 and staurosporine) with ex vivo anti-schistosomula potencies in the sub-micromolar range. Three of those compounds (epoxomicin, CGP60474 and staurosporine) also demonstrated potent and fast-acting ex vivo effects on adult schistosomes and completely inhibited egg production. ChEMBL toxicity data were also leveraged to provide further support for progressing CGP60474 (as well as luminespib and TAE684) as a novel anti-schistosomal compound. As very few compounds are currently at the advanced stages of the anti-schistosomal pipeline, our approaches highlight a strategy by which new chemical matter can be identified and quickly progressed through preclinical development.

5.
Vet Parasitol ; 309: 109766, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35926239

ABSTRACT

Control of liver fluke infections remains a significant challenge in the livestock sector due to widespread distribution of drug resistant parasite populations. In particular, increasing prevalence and economic losses due to infection with Fasciola hepatica is a direct result of drug resistance to the gold standard flukicide, triclabendazole. Sustainable control of this significant zoonotic pathogen, therefore, urgently requires the identification of new anthelmintics. Plants represent a source of molecules with potential flukicidal effects and, amongst their secondary metabolites, the diterpenoid abietic acids can be isolated in large quantities. In this study, nineteen (19) chemically modified abietic acid analogues (MC_X) were first evaluated for their anthelmintic activities against F. hepatica newly excysted juveniles (NEJs, from the laboratory-derived Italian strain); from this, 6 analogues were secondly evaluated for their anthelmintic activities against adult wild strain flukes. One analogue, MC010, was progressed further against 8-week immature- and 12-week mature Italian strain flukes. Here, MC010 demonstrated moderate activity against both of these intra-mammalian fluke stages (with an adult fluke EC50 = 12.97 µM at 72 h post culture). Overt mammalian cell toxicity of MC010 was inferred from the Madin-Darby bovine kidney (MDBK) cell line (CC50 = 17.52 µM at 24 h post culture) and demonstrated that medicinal chemistry improvements are necessary before abietic acid analogues could be considered as potential anthelmintics against liver fluke pathogens.


Subject(s)
Anthelmintics , Cattle Diseases , Fasciola hepatica , Fascioliasis , Abietanes/metabolism , Abietanes/pharmacology , Abietanes/therapeutic use , Animals , Anthelmintics/therapeutic use , Benzimidazoles/pharmacology , Cattle , Cattle Diseases/drug therapy , Fascioliasis/drug therapy , Fascioliasis/parasitology , Fascioliasis/veterinary , Mammals , Triclabendazole/pharmacology
6.
PLoS Pathog ; 18(1): e1009828, 2022 01.
Article in English | MEDLINE | ID: mdl-35025955

ABSTRACT

α-galactosidase (α-GAL) and α-N-acetylgalactosaminidase (α-NAGAL) are two glycosyl hydrolases responsible for maintaining cellular homeostasis by regulating glycan substrates on proteins and lipids. Mutations in the human genes encoding either enzyme lead to neurological and neuromuscular impairments seen in both Fabry- and Schindler/Kanzaki- diseases. Here, we investigate whether the parasitic blood fluke Schistosoma mansoni, responsible for the neglected tropical disease schistosomiasis, also contains functionally important α-GAL and α-NAGAL proteins. As infection, parasite maturation and host interactions are all governed by carefully-regulated glycosylation processes, inhibiting S. mansoni's α-GAL and α-NAGAL activities could lead to the development of novel chemotherapeutics. Sequence and phylogenetic analyses of putative α-GAL/α-NAGAL protein types showed Smp_089290 to be the only S. mansoni protein to contain the functional amino acid residues necessary for α-GAL/α-NAGAL substrate cleavage. Both α-GAL and α-NAGAL enzymatic activities were higher in females compared to males (p<0.05; α-NAGAL > α-GAL), which was consistent with smp_089290's female biased expression. Spatial localisation of smp_089290 revealed accumulation in parenchymal cells, neuronal cells, and the vitellaria and mature vitellocytes of the adult schistosome. siRNA-mediated knockdown (>90%) of smp_089290 in adult worms significantly inhibited α-NAGAL activity when compared to control worms (siLuc treated males, p<0.01; siLuc treated females, p<0.05). No significant reductions in α-GAL activities were observed in the same extracts. Despite this, decreases in α-NAGAL activities correlated with a significant inhibition in adult worm motility as well as in egg production. Programmed CRISPR/Cas9 editing of smp_089290 in adult worms confirmed the egg reduction phenotype. Based on these results, Smp_089290 was determined to act predominantly as an α-NAGAL (hereafter termed SmNAGAL) in schistosome parasites where it participates in coordinating movement and oviposition processes. Further characterisation of SmNAGAL and other functionally important glycosyl hydrolases may lead to the development of a novel anthelmintic class of compounds.


Subject(s)
Helminth Proteins/physiology , Movement/physiology , Oviposition/physiology , Schistosoma mansoni/enzymology , alpha-N-Acetylgalactosaminidase/physiology , Animals , Female , Male , Mice , Schistosomiasis mansoni
7.
PLoS Negl Trop Dis ; 15(11): e0009981, 2021 11.
Article in English | MEDLINE | ID: mdl-34793443

ABSTRACT

Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships.


Subject(s)
Cercaria/immunology , Extracellular Vesicles/immunology , Helminth Proteins/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/parasitology , Adolescent , Adult , Amino Acid Sequence , Animals , Anthelmintics/administration & dosage , Antibodies, Helminth/immunology , Cercaria/genetics , Cercaria/growth & development , Child , Cohort Studies , Extracellular Vesicles/genetics , Female , Helminth Proteins/administration & dosage , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Immunogenicity, Vaccine , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Male , Mice , Middle Aged , Praziquantel/administration & dosage , Schistosoma mansoni/chemistry , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/immunology , Sequence Alignment , Vaccines/administration & dosage , Vaccines/genetics , Vaccines/immunology , Young Adult
8.
Eur J Med Chem ; 226: 113823, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34536671

ABSTRACT

Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold. Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 µM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 µM, 0.20 µM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies.


Subject(s)
Quinoxalines/pharmacology , Schistosoma haematobium/drug effects , Schistosoma japonicum/drug effects , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Animals , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Structure , Quinoxalines/chemical synthesis , Quinoxalines/chemistry , Structure-Activity Relationship
9.
Immunohorizons ; 5(8): 721-732, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34462311

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are potent producers of type I IFN (IFN-I) during viral infection and respond to IFN-I in a positive feedback loop that promotes their function. IFN-I shapes dendritic cell responses during helminth infection, impacting their ability to support Th2 responses. However, the role of pDCs in type 2 inflammation is unclear. Previous studies have shown that pDCs are dispensable for hepatic or splenic Th2 responses during the early stages of murine infection with the trematode Schistosoma mansoni at the onset of parasite egg laying. However, during S. mansoni infection, an ongoing Th2 response against mature parasite eggs is required to protect the liver and intestine from acute damage and how pDCs participate in immune responses to eggs and adult worms in various tissues beyond acute infection remains unclear. We now show that pDCs are required for optimal Th2 cytokine production in response to S. mansoni eggs in the intestinal-draining mesenteric lymph nodes throughout infection and for egg-specific IFN-γ at later time points of infection. Further, pDC depletion at chronic stages of infection led to increased hepatic and splenic pathology as well as abrogated Th2 cell cytokine production and activation in the liver. In vitro, mesenteric lymph node pDCs supported Th2 cell responses from infection-experienced CD4+ T cells, a process dependent on pDC IFN-I responsiveness, yet independent of Ag. Together, these data highlight a previously unappreciated role for pDCs and IFN-I in maintaining and reinforcing type 2 immunity in the lymph nodes and inflamed tissue during helminth infection.


Subject(s)
Cytokines/immunology , Dendritic Cells/immunology , Lymphocyte Activation/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/parasitology , Cytokines/metabolism , Dendritic Cells/parasitology , Female , Flow Cytometry/methods , Host-Parasite Interactions/immunology , Lymphocyte Count , Mice, Inbred C57BL , Mice, Knockout , Schistosoma mansoni/physiology , Schistosomiasis mansoni/metabolism , Schistosomiasis mansoni/parasitology , T-Lymphocytes, Helper-Inducer/metabolism , T-Lymphocytes, Helper-Inducer/parasitology , Th2 Cells/immunology , Th2 Cells/metabolism , Th2 Cells/parasitology
10.
ACS Infect Dis ; 7(5): 1260-1274, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33797218

ABSTRACT

Nine hundred million people are infected with the soil-transmitted helminths Ascaris lumbricoides (roundworm), hookworm, and Trichuris trichiura (whipworm). However, low single-dose cure rates of the benzimidazole drugs, the mainstay of preventative chemotherapy for whipworm, together with parasite drug resistance, mean that current approaches may not be able to eliminate morbidity from trichuriasis. We are seeking to develop new anthelmintic drugs specifically with activity against whipworm as a priority and previously identified a hit series of dihydrobenzoxazepinone (DHB) compounds that block motility of ex vivo Trichuris muris. Here, we report a systematic investigation of the structure-activity relationship of the anthelmintic activity of DHB compounds. We synthesized 47 analogues, which allowed us to define features of the molecules essential for anthelmintic action as well as broadening the chemotype by identification of dihydrobenzoquinolinones (DBQs) with anthelmintic activity. We investigated the activity of these compounds against other parasitic nematodes, identifying DHB compounds with activity against Brugia malayi and Heligmosomoides polygyrus. We also demonstrated activity of DHB compounds against the trematode Schistosoma mansoni, a parasite that causes schistosomiasis. These results demonstrate the potential of DHB and DBQ compounds for further development as broad-spectrum anthelmintics.


Subject(s)
Anthelmintics , Brugia malayi , Nematospiroides dubius , Parasites , Animals , Anthelmintics/pharmacology , Humans , Schistosoma mansoni , Trichuris
11.
Int J Parasitol ; 51(4): 251-261, 2021 03.
Article in English | MEDLINE | ID: mdl-33253697

ABSTRACT

The Schistosoma mansoni venom allergen-like protein (SmVAL) superfamily is a collection of at least 29 molecules that have been classified into two distinctive groups (Group 1 and Group 2 SmVALs). The fundamental basis for SmVAL segregation relates to signal peptide and conserved cysteine retention (present in all Group 1 SmVALs, but absent in all Group 2 SmVALs). These structural differences have led to the hypothesis that most Group 1 SmVALs, found as components of schistosome excretory/secretory (E/S) products, predominantly interact with their environment (intermediate or definitive hosts) whereas the Group 2 SmVALs are retained within the schistosome to fulfil parasite-related functions. While experimental evidence to support Group 1 SmVAL/host interactions is growing, similar support for identification of parasite-related Group 2 SmVAL functions is currently lacking. By applying a combination of approaches to the study of SmVAL6, we provide the first known evidence for an essential function of a Group 2 SmVAL in schistosome biology. After whole mount in situ hybridisation (WISH) localised Smval6 to the anterior region of the oesophageal gland (AOG) and cells scattered through the mesenchyme in adult schistosomes, short interfering RNA (siRNA)-mediated silencing of Smval6 was employed to assess loss of function phenotypes. Here, siSmval6-mediated knockdown of transcript and protein levels led to an increase in tegumental permeability as assessed by the quantification of TAMRA-labelled dextran throughout sub-tegumental cells/tissues. Yeast two hybrid screening using SmVAL6 as a bait revealed Sm14 (a fatty acid binding protein) and a dynein light chain (DLC) as directly interacting partners. Interrogation of single-cell RNA-seq (scRNA-seq) data supported these protein interactions by demonstrating the spatial co-expression of Smval6/dlc/Sm14 in a small proportion of adult cell types (e.g. neurons, tegumental cells and neoblasts). In silico modelling of SmVAL6 with Sm14 and DLC provided evidence that opposing faces of SmVAL6 were likely responsible for these protein/protein interactions. Our results suggest that SmVAL6 participates in oesophageal biology, formation of higher order protein complexes and maintenance of tegumental barrier function. Further studies of other Group 2 SmVALs may reveal additional functions of this enigmatic superfamily.


Subject(s)
Allergens , Schistosoma mansoni , Animals , In Situ Hybridization , Schistosoma mansoni/genetics , Venoms
12.
PLoS Negl Trop Dis ; 14(10): e0008630, 2020 10.
Article in English | MEDLINE | ID: mdl-33075069

ABSTRACT

BACKGROUND: Schistosomiasis is a prevalent neglected tropical disease that affects approximately 300 million people worldwide. Its treatment is through a single class chemotherapy, praziquantel. Concerns surrounding the emergence of praziquantel insensitivity have led to a need for developing novel anthelmintics. METHODOLOGY/PRINCIPLE FINDINGS: Through evaluating and screening fourteen compounds (initially developed for anti-cancer and anti-viral projects) against Schistosoma mansoni, one of three species responsible for most cases of human schistosomiasis, a racemic N-acyl homoserine (1) demonstrated good efficacy against all intra mammalian lifecycle stages including schistosomula (EC50 = 4.7 µM), juvenile worms (EC50 = 4.3 µM) and adult worms (EC50 = 8.3 µM). To begin exploring structural activity relationships, a further 8 analogues of this compound were generated, including individual (R)- and (S)- enantiomers. Upon anti-schistosomal screening of these analogues, the (R)- enantiomer retained activity, whereas the (S)- lost activity. Furthermore, modification of the lactone ring to a thiolactone ring (3) improved potency against schistosomula (EC50 = 2.1 µM), juvenile worms (EC50 = 0.5 µM) and adult worms (EC50 = 4.8 µM). As the effective racemic parent compound is structurally similar to quorum sensing signaling peptides used by bacteria, further evaluation of its effect (along with its stereoisomers and the thiolactone analogues) against Gram+ (Staphylococcus aureus) and Gram- (Escherichia coli) species was conducted. While some activity was observed against both Gram+ and Gram- bacteria species for the racemic compound 1 (MIC 125 mg/L), the (R) stereoisomer had better activity (125 mg/L) than the (S) (>125mg/L). However, the greatest antimicrobial activity (MIC 31.25 mg/L against S. aureus) was observed for the thiolactone containing analogue (3). CONCLUSION/SIGNIFICANCE: To the best of our knowledge, this is the first demonstration that N-Acyl homoserines exhibit anthelmintic activities. Furthermore, their additional action on Gram+ bacteria opens a new avenue for exploring these molecules more broadly as part of future anti-infective initiatives.


Subject(s)
Acyl-Butyrolactones/pharmacology , Anthelmintics/pharmacology , Quorum Sensing , Schistosoma mansoni/drug effects , Acyl-Butyrolactones/chemical synthesis , Acyl-Butyrolactones/chemistry , Acyl-Butyrolactones/toxicity , Animals , Anthelmintics/chemical synthesis , Anthelmintics/chemistry , Anthelmintics/toxicity , Anti-Infective Agents/pharmacology , Escherichia coli/drug effects , Hep G2 Cells , Humans , Mice , Microbial Sensitivity Tests , Neglected Diseases , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/drug therapy , Staphylococcus aureus/drug effects , Structure-Activity Relationship
13.
PLoS Negl Trop Dis ; 13(11): e0007693, 2019 11.
Article in English | MEDLINE | ID: mdl-31730617

ABSTRACT

BACKGROUND: Praziquantel represents the frontline chemotherapy used to treat schistosomiasis, a neglected tropical disease (NTD) caused by infection with macro-parasitic blood fluke schistosomes. While this drug is safe, its inability to kill all schistosome lifecycle stages within the human host often requires repeat treatments. This limitation, amongst others, has led to the search for novel anti-schistosome replacement or combinatorial chemotherapies. Here, we describe a repositioning strategy to assess the anthelmintic activity of epigenetic probes/inhibitors obtained from the Structural Genomics Consortium. METHODOLOGY/PRINCIPLE FINDINGS: Thirty-seven epigenetic probes/inhibitors targeting histone readers, writers and erasers were initially screened against Schistosoma mansoni schistosomula using the high-throughput Roboworm platform. At 10 µM, 14 of these 37 compounds (38%) negatively affected schistosomula motility and phenotype after 72 hours of continuous co-incubation. Subsequent dose-response titrations against schistosomula and adult worms revealed epigenetic probes targeting one reader (NVS-CECR2-1), one writer (LLY-507 and BAY-598) and one eraser (GSK-J4) to be particularly active. As LLY-507/BAY-598 (SMYD2 histone methyltransferase inhibitors) and GSK-J4 (a JMJD3 histone demethylase inhibitor) regulate an epigenetic process (protein methylation) known to be critical for schistosome development, further characterisation of these compounds/putative targets was performed. RNA interference (RNAi) of one putative LLY-507/BAY-598 S. mansoni target (Smp_000700) in adult worms replicated the compound-mediated motility and egg production defects. Furthermore, H3K36me2, a known product catalysed by SMYD2 activity, was also reduced by LLY-507 (25%), BAY-598 (23%) and siSmp_000700 (15%) treatment of adult worms. Oviposition and packaging of vitelline cells into in vitro laid eggs was also significantly affected by GSK-J4 (putative cell permeable prodrug inhibitor of Smp_034000), but not by the related structural analogue GSK-J1 (cell impermeable inhibitor). CONCLUSION/SIGNIFICANCE: Collectively, these results provide further support for the development of next-generation drugs targeting schistosome epigenetic pathway components. In particular, the progression of histone methylation/demethylation modulators presents a tractable strategy for anti-schistosomal control.


Subject(s)
Drug Repositioning/methods , Epigenesis, Genetic , Lead/pharmacology , Schistosomatidae/drug effects , Schistosomatidae/genetics , Schistosomiasis/drug therapy , Animals , Anthelmintics/pharmacology , Benzazepines/pharmacology , Computational Biology/methods , Dose-Response Relationship, Drug , Female , Genomics , Hep G2 Cells , Histones/genetics , Humans , Jumonji Domain-Containing Histone Demethylases , Male , Models, Molecular , Molecular Docking Simulation , Oviposition/drug effects , Pyrimidines/pharmacology , Schistosoma mansoni/drug effects , Schistosoma mansoni/genetics , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology
14.
ACS Infect Dis ; 5(7): 1188-1199, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31083889

ABSTRACT

Sclareol, a plant-derived diterpenoid widely used as a fragrance and flavoring substance, is well-known for its promising antimicrobial and anticancer properties. However, its activity on helminth parasites has not been previously reported. Here, we show that sclareol is active against larval (IC50 ≈ 13 µM), juvenile (IC50 = 5.0 µM), and adult (IC50 = 19.3 µM) stages of Schistosoma mansoni, a parasitic trematode responsible for the neglected tropical disease schistosomiasis. Microwave-assisted synthesis of Heck-coupled derivatives improved activity, with the substituents choice guided by the Matsy decision tree. The most active derivative 12 showed improved potency and selectivity on larval (IC50 ≈ 2.2 µM, selectivity index (SI) ≈ 22 in comparison to HepG2 cells), juvenile (IC50 = 1.7 µM, SI = 28.8), and adult schistosomes (IC50 = 9.4 µM, SI = 5.2). Scanning electron microscopy studies revealed that compound 12 induced blebbing of the adult worm surface at sublethal concentration (12.5 µM); moreover, the compound inhibited egg production at the lowest concentration tested (3.13 µM). The observed phenotype and data obtained by untargeted metabolomics suggested that compound 12 affects membrane lipid homeostasis by interfering with arachidonic acid metabolism. The same methodology applied to praziquantel (PZQ)-treated worms revealed sugar metabolism alterations that could be ascribed to the previously reported action of PZQ on serotonin signaling and/or effects on glycolysis. Importantly, our data suggest that compound 12 and PZQ exert different antischistosomal activities. More studies will be necessary to confirm the generated hypothesis and to progress the development of more potent antischistosomal sclareol derivatives.


Subject(s)
Diterpenes/chemical synthesis , Metabolome/drug effects , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Animals , Diterpenes/chemistry , Diterpenes/pharmacology , Glycolysis/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Larva/drug effects , Metabolomics/methods , Microwaves , Molecular Structure , Schistosoma mansoni/growth & development , Schistosoma mansoni/metabolism
15.
Int J Parasitol Drugs Drug Resist ; 8(3): 465-474, 2018 12.
Article in English | MEDLINE | ID: mdl-30399512

ABSTRACT

Two economically and biomedically important platyhelminth species, Fasciola hepatica (liver fluke) and Schistosoma mansoni (blood fluke), are responsible for the neglected tropical diseases (NTDs) fasciolosis and schistosomiasis. Due to the absence of prophylactic vaccines, these NTDs are principally managed by the single class chemotherapies triclabendazole (F. hepatica) and praziquantel (S. mansoni). Unfortunately, liver fluke resistance to triclabendazole has been widely reported and blood fluke insensitivity/resistance to praziquantel has been observed in both laboratory settings as well as in endemic communities. Therefore, the identification of new anthelmintics is necessary for the sustainable control of these NTDs in both animal and human populations. Here, continuing our work with phytochemicals, we isolated ten triterpenoids from the mature bark of Abies species and assessed their anthelmintic activities against F. hepatica and S. mansoni larval and adult lifecycle stages. Full 1H and 13C NMR-mediated structural elucidation of the two most active triterpenoids revealed that a tetracyclic steroid-like nucleus core and a lactone side chain are associated with the observed anthelmintic effects. When compared to representative mammalian cell lines (MDBK and HepG2), the most potent triterpenoid (700015; anthelmintic EC50s range from 0.7 µM-15.6 µM) displayed anthelmintic selectivity (selectivity indices for F. hepatica: 13 for newly excysted juveniles, 46 for immature flukes, 2 for mature flukes; selectivity indices for S. mansoni: 14 for schistosomula, 9 for immature flukes, 4 for adult males and 3 for adult females) and induced severe disruption of surface membranes in both liver and blood flukes. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also severely inhibited by 700015. Together, our results describe the structural elucidation of a novel broad acting anthelmintic triterpenoid and support further investigations developing this compound into more potent analogues for the control of both fasciolosis and schistosomiasis.


Subject(s)
Abies/chemistry , Anthelmintics/pharmacology , Drug Discovery , Fasciola hepatica/drug effects , Lactones/pharmacology , Schistosoma mansoni/drug effects , Triterpenes/pharmacology , Abies/anatomy & histology , Animals , Anthelmintics/chemistry , Fasciola hepatica/physiology , Fascioliasis/drug therapy , Fascioliasis/parasitology , Female , Hep G2 Cells , Humans , Lactones/chemistry , Life Cycle Stages/drug effects , Male , Neglected Diseases/drug therapy , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Bark/chemistry , Schistosoma mansoni/physiology , Schistosomiasis/drug therapy , Schistosomiasis/parasitology , Triterpenes/chemistry , Triterpenes/isolation & purification
16.
Eur J Cell Biol ; 92(6-7): 222-8, 2013.
Article in English | MEDLINE | ID: mdl-23787121

ABSTRACT

Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.


Subject(s)
Cytokinesis , Dictyostelium/metabolism , Glycogen Synthase Kinase 3/metabolism , Protozoan Proteins/metabolism , Spindle Apparatus/metabolism , Chromosome Segregation , Dictyostelium/genetics , Dictyostelium/physiology , Glycogen Synthase Kinase 3/genetics , Mutation , Protein Binding , Protozoan Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...