Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 12(11)2023 May 23.
Article in English | MEDLINE | ID: mdl-37297820

ABSTRACT

Under exceptional circumstances, including high rates of protocol non-compliance, per-protocol (PP) analysis can better indicate the real-world benefits of a medical intervention than intention-to-treat (ITT) analysis. Exemplifying this, the first randomized clinical trial (RCT) considered found that colonoscopy screenings were marginally beneficial, based upon ITT analysis, with only 42% of the intervention group actually undergoing the procedure. However, the study authors themselves concluded that the medical efficacy of that screening was a 50% reduction in colorectal cancer deaths among that 42% PP group. The second RCT found a ten-fold reduction in mortality for a COVID-19 treatment drug vs. placebo by PP analysis, but only a minor benefit by ITT analysis. The third RCT, conducted as an arm of the same platform trial as the second RCT, tested another COVID-19 treatment drug and reported no significant benefit by ITT analysis. Inconsistencies and irregularities in the reporting of protocol compliance for this study required consideration of PP outcomes for deaths and hospitalizations, yet the study coauthors refused to disclose them, instead directing inquiring scientists to a data repository which never held the study's data. These three RCTs illustrate conditions under which PP outcomes may differ significantly from ITT outcomes and the need for data transparency when these reported or indicated discrepancies arise.

4.
Am J Ther ; 28(4): e434-e460, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34145166

ABSTRACT

BACKGROUND: Repurposed medicines may have a role against the SARS-CoV-2 virus. The antiparasitic ivermectin, with antiviral and anti-inflammatory properties, has now been tested in numerous clinical trials. AREAS OF UNCERTAINTY: We assessed the efficacy of ivermectin treatment in reducing mortality, in secondary outcomes, and in chemoprophylaxis, among people with, or at high risk of, COVID-19 infection. DATA SOURCES: We searched bibliographic databases up to April 25, 2021. Two review authors sifted for studies, extracted data, and assessed risk of bias. Meta-analyses were conducted and certainty of the evidence was assessed using the GRADE approach and additionally in trial sequential analyses for mortality. Twenty-four randomized controlled trials involving 3406 participants met review inclusion. THERAPEUTIC ADVANCES: Meta-analysis of 15 trials found that ivermectin reduced risk of death compared with no ivermectin (average risk ratio 0.38, 95% confidence interval 0.19-0.73; n = 2438; I2 = 49%; moderate-certainty evidence). This result was confirmed in a trial sequential analysis using the same DerSimonian-Laird method that underpinned the unadjusted analysis. This was also robust against a trial sequential analysis using the Biggerstaff-Tweedie method. Low-certainty evidence found that ivermectin prophylaxis reduced COVID-19 infection by an average 86% (95% confidence interval 79%-91%). Secondary outcomes provided less certain evidence. Low-certainty evidence suggested that there may be no benefit with ivermectin for "need for mechanical ventilation," whereas effect estimates for "improvement" and "deterioration" clearly favored ivermectin use. Severe adverse events were rare among treatment trials and evidence of no difference was assessed as low certainty. Evidence on other secondary outcomes was very low certainty. CONCLUSIONS: Moderate-certainty evidence finds that large reductions in COVID-19 deaths are possible using ivermectin. Using ivermectin early in the clinical course may reduce numbers progressing to severe disease. The apparent safety and low cost suggest that ivermectin is likely to have a significant impact on the SARS-CoV-2 pandemic globally.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Ivermectin/pharmacology , Antiviral Agents/pharmacology , COVID-19/prevention & control , Humans , SARS-CoV-2 , Treatment Outcome
6.
Rev Sci Instrum ; 85(11): 111502, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430091

ABSTRACT

Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

7.
J Magn Reson ; 183(2): 167-77, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16962343

ABSTRACT

Pulsed field gradient NMR flow propagators for water flow in Bentheimer sandstone are measured at low fields (1H resonance 2 MHz), using both unipolar and bipolar variants of the pulsed gradient method. We compare with propagators measured at high fields (1H resonance 85 MHz). We show that (i) measured flow propagators appear to be equivalent, in this rock, and (ii) the lower signal to noise ratio at low fields is not a serious limitation. By comparing different pulse sequences, we study the effects of the internal gradients on the propagator measurement at 2 MHz, which for certain rocks may persist even at low fields.


Subject(s)
Geologic Sediments/analysis , Geologic Sediments/chemistry , Magnetic Resonance Spectroscopy/instrumentation , Magnetics/instrumentation , Microfluidics/instrumentation , Equipment Design , Equipment Failure Analysis , Magnetic Resonance Spectroscopy/methods , Microfluidics/methods , Permeability , Reproducibility of Results , Sensitivity and Specificity , Water/chemistry
8.
Magn Reson Imaging ; 23(2): 305-9, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15833632

ABSTRACT

We review diffusion-weighted relaxation protocols for two-dimensional diffusion/relaxation time (D, T(2)) distributions and their application to fluid-saturated sedimentary rocks at low fields typical of oil-well logging tools (< or = 2 MHz for 1H). Fixed field gradient (FFG) protocols may be implemented in logging tools and in the laboratory; there, pulsed field gradient (PFG) protocols are also available. In either category, direct or stimulated echoes may be used for the diffusion evolution periods. We compare the results of several variant FFG and PFG protocols obtained on liquids and two contrasting sedimentary rocks. For liquids and rocks of negligible internal gradients (g(int)), results are comparable, as expected, for all the studied protocols. For rocks of strong g(int), protocol-dependent artifacts are seen in the joint (D, T2) distributions, consistent with the effects of the internal fields. For laboratory petrophysics, the PFG methods offer several advantages: (a) significantly improved signal-to-noise ratio and acquisition times for repetitions over many samples; (b) freedom from heteronuclear contamination when fluorinated liquids are used in core holders; and (c) a palette of variants--one comparable with the FFG--for the study of rocks of significant g(int). Given suitable hardware, both PFG and FFG methods can be implemented in the same bench-top apparatus, providing a versatile test bed for application in a petrophysical laboratory.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Petroleum , Diffusion , Geologic Sediments/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...