Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(17): 7256-7269, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38641325

ABSTRACT

Through investigating the combined impact of the environmental exposures experienced by an individual throughout their lifetime, exposome research provides opportunities to understand and mitigate negative health outcomes. While current exposome research is driven by epidemiological studies that identify associations between exposures and effects, new frameworks integrating more substantial population-level metadata, including electronic health and administrative records, will shed further light on characterizing environmental exposure risks. Molecular biology offers methods and concepts to study the biological and health impacts of exposomes in experimental and computational systems. Of particular importance is the growing use of omics readouts in epidemiological and clinical studies. This paper calls for the adoption of mechanistic molecular biology approaches in exposome research as an essential step in understanding the genotype and exposure interactions underlying human phenotypes. A series of recommendations are presented to make the necessary and appropriate steps to move from exposure association to causation, with a huge potential to inform precision medicine and population health. This includes establishing hypothesis-driven laboratory testing within the exposome field, supported by appropriate methods to read across from model systems research to human.


Subject(s)
Environmental Exposure , Exposome , Humans , Molecular Biology
2.
Curr Opin Genet Dev ; 82: 102103, 2023 10.
Article in English | MEDLINE | ID: mdl-37619506

ABSTRACT

Integrated and non-integrated stem cell-based embryo models are becoming widely adopted tools in biomedical research with distinct advantages over animal models for studying human development. Although SCB-EMs have tremendous benefits for research, they raise a number of social, ethical and legal questions that affect future research and widespread adoption in industry and clinical settings. The 2021 International Society for Stem Cell Research Guidelines for Stem Cell Research and Clinical Translation provide helpful guidance on many of these issues but do not have force in domestic law. Careful appraisal and development of national legal and ethical frameworks is crucial. Paving the way to better regulation provides an ethical and social foundation to continue using human embryo models and to fully realise their potential benefits for reproductive medicine.


Subject(s)
Biomedical Research , Animals , Humans , Embryo, Mammalian , Policy , Stem Cells
3.
Environ Toxicol Chem ; 30(8): 1810-8, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21560144

ABSTRACT

Chemical toxicants, particularly metal ions, are a major contaminant in global waterways. Live-organism bioassays used to monitor chemical toxicants commonly involve measurements of activity or survival of a freshwater cladoceran (Ceriodaphnia dubia) or light emitted by the marine bacterium Vibrio fischeri, used in the commercial Microtox® bioassay. Here we describe a novel molecule-based assay system employing DNA as the chemical biosensor. Metals bind to DNA, causing structural changes that expel a bound (intercalated) fluorescent reporter dye. Analyses of test data using 48 wastewater samples potentially contaminated by metal ions show that the DNA-dye assay results correlate with those from C. dubia and Microtox bioassays. All three assays exhibit additive, antagonistic, and synergistic responses that cannot be predicted by knowing individual metal concentrations. Analyses of metals in these samples imply the presence of chemical toxicants other than metal ions. The DNA-dye assay is robust, has a 12-month shelf life, and is only slightly affected by sample pH in the range 4 to 9. The assay is completed in a matter of minutes, and its portability makes it well suited as a screening assay for use in the field. We conclude that the DNA-dye test is a surrogate bioassay suitable for screening chemical toxicity.


Subject(s)
DNA/metabolism , Toxicity Tests, Acute/methods , Water Pollutants, Chemical/toxicity , Aliivibrio fischeri/drug effects , Aliivibrio fischeri/metabolism , Animals , Biological Assay/methods , DNA/chemistry , Daphnia/drug effects , Daphnia/metabolism , Environmental Monitoring/methods , Fresh Water/chemistry , Metals/toxicity , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...