Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3061, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594238

ABSTRACT

Radiation mapping has attracted widespread research attention and increased public concerns on environmental monitoring. Regarding materials and their configurations, radiation detectors have been developed to identify the position and strength of the radioactive sources. However, due to the complex mechanisms of radiation-matter interaction and data limitation, high-performance and low-cost radiation mapping is still challenging. Here, we present a radiation mapping framework using Tetris-inspired detector pixels. Applying inter-pixel padding for enhancing contrast between pixels and neural networks trained with Monte Carlo (MC) simulation data, a detector with as few as four pixels can achieve high-resolution directional prediction. A moving detector with Maximum a Posteriori (MAP) further achieved radiation position localization. Field testing with a simple detector has verified the capability of the MAP method for source localization. Our framework offers an avenue for high-quality radiation mapping with simple detector configurations and is anticipated to be deployed for real-world radiation detection.

2.
Front Mol Neurosci ; 16: 1139118, 2023.
Article in English | MEDLINE | ID: mdl-37008785

ABSTRACT

Autism is characterized by atypical social communication and stereotyped behaviors. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are detected in 1-2% of patients with autism and intellectual disability, but the mechanisms underpinning the symptoms remain largely unknown. Here, we characterized the behavior of Shank3 Δ11/Δ11 mice from 3 to 12 months of age. We observed decreased locomotor activity, increased stereotyped self-grooming and modification of socio-sexual interaction compared to wild-type littermates. We then used RNAseq on four brain regions of the same animals to identify differentially expressed genes (DEGs). DEGs were identified mainly in the striatum and were associated with synaptic transmission (e.g., Grm2, Dlgap1), G-protein-signaling pathways (e.g., Gnal, Prkcg1, and Camk2g), as well as excitation/inhibition balance (e.g., Gad2). Downregulated and upregulated genes were enriched in the gene clusters of medium-sized spiny neurons expressing the dopamine 1 (D1-MSN) and the dopamine 2 receptor (D2-MSN), respectively. Several DEGs (Cnr1, Gnal, Gad2, and Drd4) were reported as striosome markers. By studying the distribution of the glutamate decarboxylase GAD65, encoded by Gad2, we showed that the striosome compartment of Shank3 Δ11/Δ11 mice was enlarged and displayed much higher expression of GAD65 compared to wild-type mice. Altogether, these results indicate altered gene expression in the striatum of Shank3-deficient mice and strongly suggest, for the first time, that the excessive self-grooming of these mice is related to an imbalance in the striatal striosome and matrix compartments.

3.
Nat Commun ; 14(1): 1888, 2023 04 05.
Article in English | MEDLINE | ID: mdl-37019891

ABSTRACT

Two-photon, single-cell resolution optogenetics based on holographic light-targeting approaches enables the generation of precise spatiotemporal neuronal activity patterns and thus a broad range of experimental applications, such as high throughput connectivity mapping and probing neural codes for perception. Yet, current holographic approaches limit the resolution for tuning the relative spiking time of distinct cells to a few milliseconds, and the achievable number of targets to 100-200, depending on the working depth. To overcome these limitations and expand the capabilities of single-cell optogenetics, we introduce an ultra-fast sequential light targeting (FLiT) optical configuration based on the rapid switching of a temporally focused beam between holograms at kHz rates. We used FLiT to demonstrate two illumination protocols, termed hybrid- and cyclic-illumination, and achieve sub-millisecond control of sequential neuronal activation and high throughput multicell illumination in vitro (mouse organotypic and acute brain slices) and in vivo (zebrafish larvae and mice), while minimizing light-induced thermal rise. These approaches will be important for experiments that require rapid and precise cell stimulation with defined spatio-temporal activity patterns and optical control of large neuronal ensembles.


Subject(s)
Holography , Zebrafish , Mice , Animals , Neurons/physiology , Photic Stimulation/methods , Holography/methods , Photons , Optogenetics/methods , Light
4.
Neuropsychopharmacology ; 48(6): 963-974, 2023 05.
Article in English | MEDLINE | ID: mdl-36932179

ABSTRACT

A link between gut dysbiosis and the pathogenesis of brain disorders has been identified. A role for gut bacteria in drug reward and addiction has been suggested but very few studies have investigated their impact on brain and behavioral responses to addictive drugs so far. In particular, their influence on nicotine's addiction-like processes remains unknown. In addition, evidence shows that glial cells shape the neuronal activity of the mesolimbic system but their regulation, within this system, by the gut microbiome is not established. We demonstrate that a lack of gut microbiota in male mice potentiates the nicotine-induced activation of sub-regions of the mesolimbic system. We further show that gut microbiota depletion enhances the response to nicotine of dopaminergic neurons of the posterior ventral tegmental area (pVTA), and alters nicotine's rewarding and aversive effects in an intra-VTA self-administration procedure. These effects were not associated with gross behavioral alterations and the nicotine withdrawal syndrome was not impacted. We further show that depletion of the gut microbiome modulates the glial cells of the mesolimbic system. Notably, it increases the number of astrocytes selectively in the pVTA, and the expression of postsynaptic density protein 95 in both VTA sub-regions, without altering the density of the astrocytic glutamatergic transporter GLT1. Finally, we identify several sub-populations of microglia in the VTA that differ between its anterior and posterior sub-parts, and show that they are re-organized in conditions of gut microbiota depletion. The present study paves the way for refining our understanding of the pathophysiology of nicotine addiction.


Subject(s)
Gastrointestinal Microbiome , Substance Withdrawal Syndrome , Mice , Male , Animals , Nicotine/pharmacology , Ventral Tegmental Area , Dopamine/metabolism , Reward , Substance Withdrawal Syndrome/metabolism , Neuroglia/metabolism
5.
Sci Rep ; 13(1): 1310, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36693824

ABSTRACT

Legacy nuclear-reactor Boltzmann solvers start clinical deployment as an alternative to Monte Carlo (MC) codes and Fermi-Eyges semiemprical models in radiation oncology treatment planning. Today's certified clinical solvers are limited to photon beams. In this paper, ELECTR, a state-of-the-art multigroup electron cross sections generation module in NJOY is presented and validated against Lockwood's calorimetric measurements, EGS-nrc and GEANT-4 for 1-20 MeV unidirectional electron beams. The nuclear-reactor DRAGON-5 solver is upgraded to access the library and solve the Boltzmann-Fokker-Planck (BFP) equation. A variety of heterogeneous radiotherapy and radiosurgery phantom configurations were used for validation purpose. Case studies include a thorax benchmark, that of a typical breast Intra-Operative Radiotherapy and a high-heterogeneity patient-like benchmark. For all beams, [Formula: see text] of the water voxels satisfied the American Association of Physicists in Medicine accuracy criterion for a BFP-MC dose error below [Formula: see text]. At least, [Formula: see text] of adipose, muscle, bone, lung, tumor and breast voxels satisfied the [Formula: see text] criterion. The average BFP-MC relative error was about [Formula: see text] for all voxels, beams and materials combined. By irradiating homogeneous slabs from [Formula: see text] (hydrogen) to [Formula: see text] (einsteinium), we reported performance and defects of the CEPXS mode [US. Sandia National Lab., SAND-89-1685] in ELECTR for the entire periodic table. For all Lockwood's benchmarks, NJOY-DRAGON dose predictions are within the experimental data precision for [Formula: see text] of voxels.

6.
Sci Adv ; 8(49): eadd7729, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36383037

ABSTRACT

The electric excitability of muscle, heart, and brain tissue relies on the precise interplay of Na+- and K+-selective ion channels. The involved ion fluxes are controlled in optogenetic studies using light-gated channelrhodopsins (ChRs). While non-selective cation-conducting ChRs are well established for excitation, K+-selective ChRs (KCRs) for efficient inhibition have only recently come into reach. Here, we report the molecular analysis of recently discovered KCRs from the stramenopile Hyphochytrium catenoides and identification of a novel type of hydrophobic K+ selectivity filter. Next, we demonstrate that the KCR signature motif is conserved in related stramenopile ChRs. Among them, WiChR from Wobblia lunata features a so far unmatched preference for K+ over Na+, stable photocurrents under continuous illumination, and a prolonged open-state lifetime. Showing high expression levels in cardiac myocytes and neurons, WiChR allows single- and two-photon inhibition at low irradiance and reduced tissue heating. Therefore, we recommend WiChR as the long-awaited efficient and versatile optogenetic inhibitor.


Subject(s)
Light , Potassium , Channelrhodopsins/genetics , Channelrhodopsins/metabolism , Potassium/metabolism , Optogenetics , Neurons/physiology , Sodium/metabolism
7.
Mol Psychiatry ; 27(2): 918-928, 2022 02.
Article in English | MEDLINE | ID: mdl-34785784

ABSTRACT

The persistent and experience-dependent nature of drug addiction may result in part from epigenetic alterations, including non-coding micro-RNAs (miRNAs), which are both critical for neuronal function and modulated by cocaine in the striatum. Two major striatal cell populations, the striato-nigral and striato-pallidal projection neurons, express, respectively, the D1 (D1-SPNs) and D2 (D2-SPNs) dopamine receptor, and display distinct but complementary functions in drug-evoked responses. However, a cell-type-specific role for miRNAs action has yet to be clarified. Here, we evaluated the expression of a subset of miRNAs proposed to modulate cocaine effects in the nucleus accumbens (NAc) and dorsal striatum (DS) upon sustained cocaine exposure in mice and showed that these selected miRNAs were preferentially upregulated in the NAc. We focused on miR-1 considering the important role of some of its predicted mRNA targets, Fosb and Npas4, in the effects of cocaine. We validated these targets in vitro and in vivo. We explored the potential of miR-1 to regulate cocaine-induced behavior by overexpressing it in specific striatal cell populations. In DS D1-SPNs miR-1 overexpression downregulated Fosb and Npas4 and reduced cocaine-induced CPP reinstatement, but increased cue-induced cocaine seeking. In DS D2-SPNs miR-1 overexpression reduced the motivation to self-administer cocaine. Our results indicate a role of miR1 and its target genes, Fosb and Npas4, in these behaviors and highlight a precise cell-type- and region-specific modulatory role of miR-1, illustrating the importance of cell-specific investigations.


Subject(s)
Cocaine , MicroRNAs , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cocaine/metabolism , Cocaine/pharmacology , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neurons/metabolism , Nucleus Accumbens/metabolism , Receptors, Dopamine D1/genetics , Receptors, Dopamine D1/metabolism , Self Administration
8.
EMBO Rep ; 22(12): e51882, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34661342

ABSTRACT

We show here that the transcription factor Npas4 is an important regulator of medium spiny neuron spine density and electrophysiological parameters and that it determines the magnitude of cocaine-induced hyperlocomotion in mice. Npas4 is induced by synaptic stimuli that cause calcium influx, but not dopaminergic or PKA-stimulating input, in mouse medium spiny neurons and human iPSC-derived forebrain organoids. This induction is independent of ubiquitous kinase pathways such as PKA and MAPK cascades, and instead depends on calcineurin and nuclear calcium signalling. Npas4 controls a large regulon containing transcripts for synaptic molecules, such as NMDA receptors and VDCC subunits, and determines in vivo MSN spine density, firing rate, I/O gain function and paired-pulse facilitation. These functions at the molecular and cellular levels control the locomotor response to drugs of abuse, as Npas4 knockdown in the nucleus accumbens decreases hyperlocomotion in response to cocaine in male mice while leaving basal locomotor behaviour unchanged.


Subject(s)
Cocaine-Related Disorders , Cocaine , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cocaine/pharmacology , Cocaine-Related Disorders/genetics , Dopamine/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Nucleus Accumbens/metabolism
9.
Behav Pharmacol ; 32(2&3): 212-219, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33660663

ABSTRACT

Relapse is common amongst smokers attempting to quit and tobacco cue-induced craving is an important relapse mechanism. Preclinical studies commonly use cue-induced reinstatement of nicotine seeking to investigate relapse neurobiology. Previous research suggests dependence severity and nicotine intake history affect smoking resumption and cue-induced reinstatement of nicotine seeking. However, behavioural data may be interpreted in terms of nicotine reinforcement. This translational study investigated if individual differences in objectively assessed nicotine reinforcement strength were associated with cue-reactivity in both rats and human smokers, which to our knowledge has not been investigated before. Rats (n = 16) were trained to self-administer nicotine and were tested on a progressive ratio schedule of nicotine reinforcement, to assess reinforcer strength, and on a test of cue-induced reinstatement of nicotine seeking. Nicotine reinforcement strength was assessed in human smokers (n = 104) using a forced choice task (nicotine containing vs. denicotinised cigarettes) and self-reported cue-induced craving was assessed following exposure to smoking and neutral cues. Responding for nicotine under progressive ratio was strongly positively correlated with cue-induced reinstatement of nicotine seeking in rats. Nicotine choices in human smokers were significantly associated with cue-induced craving controlling for dependence severity, years of smoking, and urge to smoke following neutral cues. Findings suggest nicotine reinforcement strength is associated with both types of cue-induced behaviour, implying some translational commonality between cue-induced craving in human smokers and cue-induced reinstatement of nicotine seeking in rats. Findings are discussed in relation to clinical implications and whether these laboratory tasks assess drug 'wanting'.


Subject(s)
Cigarette Smoking/psychology , Cues , Nicotine/pharmacology , Reinforcement, Psychology , Adult , Animals , Behavior, Animal/drug effects , Craving , Female , Humans , Male , Rats , Rats, Long-Evans , Reinforcement Schedule , Self Administration , Smokers/psychology , Species Specificity
10.
Prog Neurobiol ; 197: 101898, 2021 02.
Article in English | MEDLINE | ID: mdl-32841724

ABSTRACT

Cocaine addiction is a chronic and relapsing disorder with an important genetic component. Human candidate gene association studies showed that the single nucleotide polymorphism (SNP) rs16969968 in the α5 subunit (α5SNP) of nicotinic acetylcholine receptors (nAChRs), previously associated with increased tobacco dependence, was linked to a lower prevalence of cocaine use disorder (CUD). Three additional SNPs in the α5 subunit, previously shown to modify α5 mRNA levels, were also associated with CUD, suggesting an important role of the subunit in this pathology. To investigate the link between this subunit and CUD, we submitted rats knockout for the α5 subunit gene (α5KO), or carrying the α5SNP, to cocaine self-administration (SA) and showed that the acquisition of cocaine-SA was impaired in α5SNP rats while α5KO rats exhibited enhanced cocaine-induced relapse associated with altered neuronal activity in the nucleus accumbens. In addition, we observed in a human cohort of patients with CUD that the α5SNP was associated with a slower transition from first cocaine use to CUD. We also identified a novel SNP in the ß4 nAChR subunit, part of the same gene cluster in the human genome and potentially altering CHRNA5 expression, associated with shorter time to relapse to cocaine use in patients. In conclusion, the α5SNP is protective against CUD by influencing early stages of cocaine exposure while CHRNA5 expression levels may represent a biomarker for the risk to relapse to cocaine use. Drugs modulating α5 containing nAChR activity may thus represent a novel therapeutic strategy against CUD.


Subject(s)
Cocaine-Related Disorders , Animals , Cocaine , Cocaine-Related Disorders/genetics , Humans , Rats , Rats, Transgenic , Receptors, Nicotinic/genetics , Recurrence
11.
Neuropharmacology ; 177: 108234, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32738310

ABSTRACT

Over the last decade, robust human genetic findings have been instrumental in elucidating the heritable basis of nicotine addiction (NA). They highlight coding and synonymous polymorphisms in a cluster on chromosome 15, encompassing the CHRNA5, CHRNA3 and CHRNB4 genes, coding for three subunits of the nicotinic acetylcholine receptor (nAChR). They have inspired an important number of preclinical studies, and will hopefully lead to the definition of novel drug targets for treating NA. Here, we review these candidate gene and genome-wide association studies (GWAS) and their direct implication in human brain function and NA-related phenotypes. We continue with a description of preclinical work in transgenic rodents that has led to a mechanistic understanding of several of the genetic hits. We also highlight important issues with regards to CHRNA3 and CHRNB4 where we are still lacking a dissection of their role in NA, including even in preclinical models. We further emphasize the use of human induced pluripotent stem cell-derived models for the analysis of synonymous and intronic variants on a human genomic background. Finally, we indicate potential avenues to further our understanding of the role of this human genetic variation. This article is part of the special issue on 'Contemporary Advances in Nicotine Neuropharmacology'.


Subject(s)
Genetic Predisposition to Disease/genetics , Multigene Family/genetics , Nerve Tissue Proteins/genetics , Receptors, Nicotinic/genetics , Tobacco Use Disorder/genetics , Animals , Genome-Wide Association Study/methods , Genome-Wide Association Study/trends , Humans , Tobacco Use Disorder/diagnosis
12.
Neuropsychopharmacology ; 44(11): 1906-1916, 2019 10.
Article in English | MEDLINE | ID: mdl-31288250

ABSTRACT

Human genetic variation in the nicotinic receptor gene cluster CHRNA5/A3/B4, in particular the non-synonymous and frequent CHRNA5 variant rs16969968 (α5SNP), has an important consequence on smoking behavior in humans. A number of genetic association studies have additionally implicated the CHRNA5 gene in addictions to other drugs, and also body mass index (BMI). Here, we model the α5SNP, in a transgenic rat line, and establish its role in alcohol dependence, and feeding behavior. Rats expressing the α5SNP consume more alcohol, and exhibit increased relapse to alcohol seeking after abstinence. This high-relapsing phenotype is reflected in altered activity in the insula, linked to interoception, as established using c-Fos immunostaining. Similarly, relapse to food seeking is increased in the transgenic group, while a nicotine treatment reduces relapse in both transgenic and control rats. These findings point to a general role of this human polymorphism in reward processing, and multiple addictions other than smoking. This could pave the way for the use of medication targeting the nicotinic receptor in the treatment of alcohol use and eating disorders, and comorbid conditions in smokers.


Subject(s)
Alcoholism/genetics , Cerebral Cortex/drug effects , Drug-Seeking Behavior/physiology , Ethanol/administration & dosage , Feeding Behavior/physiology , Receptors, Nicotinic/genetics , Reward , Alcoholism/metabolism , Animals , Cerebral Cortex/metabolism , Feeding Behavior/drug effects , Male , Motor Activity/drug effects , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Long-Evans , Rats, Transgenic , Self Administration
13.
Curr Biol ; 28(20): 3244-3253.e7, 2018 10 22.
Article in English | MEDLINE | ID: mdl-30293722

ABSTRACT

Tobacco addiction is a chronic and relapsing disorder with an important genetic component that represents a major public health issue. Meta-analysis of large-scale human genome-wide association studies (GWASs) identified a frequent non-synonymous SNP in the gene coding for the α5 subunit of nicotinic acetylcholine receptors (α5SNP), which significantly increases the risk for tobacco dependence and delays smoking cessation. To dissect the neuronal mechanisms underlying the vulnerability to nicotine addiction in carriers of the α5SNP, we created rats expressing this polymorphism using zinc finger nuclease technology and evaluated their behavior under the intravenous nicotine-self-administration paradigm. The electrophysiological responses of their neurons to nicotine were also evaluated. α5SNP rats self-administered more nicotine at high doses and exhibited higher nicotine-induced reinstatement of nicotine seeking than wild-type rats. Higher reinstatement was associated with altered neuronal activity in several discrete areas that are interconnected, including in the interpeduncular nucleus (IPN), a GABAergic structure that strongly expresses α5-containing nicotinic receptors. The altered reactivity of IPN neurons of α5SNP rats to nicotine was confirmed electrophysiologically. In conclusion, the α5SNP polymorphism is a major risk factor for nicotine intake at high doses and for relapse to nicotine seeking in rats, a dual effect that reflects the human condition. Our results also suggest an important role for the IPN in the higher relapse to nicotine seeking observed in α5SNP rats.


Subject(s)
Nicotine/administration & dosage , Polymorphism, Single Nucleotide , Receptors, Nicotinic/genetics , Self Administration , Tobacco Use Disorder/genetics , Animals , Base Sequence , Female , Humans , Male , Rats , Rats, Long-Evans , Rats, Transgenic , Receptors, Nicotinic/metabolism , Recurrence , Sequence Alignment
14.
Cell Rep ; 24(5): 1243-1253.e5, 2018 07 31.
Article in English | MEDLINE | ID: mdl-30067979

ABSTRACT

In recent decades, optogenetics has been transforming neuroscience research, enabling neuroscientists to drive and read neural circuits. The recent development in illumination approaches combined with two-photon (2P) excitation, either sequential or parallel, has opened the route for brain circuit manipulation with single-cell resolution and millisecond temporal precision. Yet, the high excitation power required for multi-target photostimulation, especially under 2P illumination, raises questions about the induced local heating inside samples. Here, we present and experimentally validate a theoretical model that makes it possible to simulate 3D light propagation and heat diffusion in optically scattering samples at high spatial and temporal resolution under the illumination configurations most commonly used to perform 2P optogenetics: single- and multi-spot holographic illumination and spiral laser scanning. By investigating the effects of photostimulation repetition rate, spot spacing, and illumination dependence of heat diffusion, we found conditions that make it possible to design a multi-target 2P optogenetics experiment with minimal sample heating.


Subject(s)
Brain/radiation effects , Hot Temperature/adverse effects , Optogenetics/methods , Photons/adverse effects , Action Potentials , Animals , Brain/physiology , Female , Holography/methods , Male , Mice , Mice, Inbred C57BL
15.
Opt Express ; 25(11): 12640-12652, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28786619

ABSTRACT

Computer-generated holography enables efficient light pattern generation through phase-only wavefront modulation. While perfect patterning usually requires control over both phase and amplitude, iterative Fourier transform algorithms (IFTA) can achieve phase-only approximations which maximize light efficiency at the cost of uniformity. The phase being unconstrained in the output plane, it can vary abruptly in some regions leading to destructive interferences. Among such structures phase vortices are the most common. Here we demonstrate theoretically, numerically and experimentally, a novel approach for eliminating phase vortices by spatially filtering the phase input to the IFTA, combining it with phase-based complex amplitude control at the spatial light modulator (SLM) plane to generate smooth shapes. The experimental implementation is achieved performing complex amplitude modulation with a phase-only SLM. This proposed experimental scheme offers a continuous and centered field of excitation. Lastly, we characterize achievable trade-offs between pattern uniformity, diffraction efficiency, and axial confinement.

16.
Biol Psychiatry ; 82(11): 806-818, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28545678

ABSTRACT

BACKGROUND: Repeated cocaine exposure produces new spine formation in striatal projection neurons (SPNs) of the nucleus accumbens. However, an acute exposure to cocaine can trigger long-lasting synaptic plasticity in SPNs leading to behavioral alterations. This raises the intriguing question as to whether a single administration of cocaine could enduringly modify striatal connectivity. METHODS: A three-dimensional morphometric analysis of presynaptic glutamatergic boutons and dendritic spines was performed on SPNs 1 hour and 1 week after a single cocaine administration. Time-lapse two-photon microscopy in adult slices was used to determine the precise molecular-events sequence responsible for the rapid spine formation. RESULTS: A single injection triggered a rapid synaptogenesis and persistent increase in glutamatergic connectivity in SPNs from the shell part of the nucleus accumbens, specifically. Synapse formation occurred through clustered growth of active spines contacting pre-existing axonal boutons. Spine growth required extracellular signal-regulated kinase activation, while spine stabilization involved transcription-independent protein synthesis driven by mitogen-activated protein kinase interacting kinase-1, downstream from extracellular signal-regulated kinase. The maintenance of new spines driven by mitogen-activated protein kinase interacting kinase-1 was essential for long-term connectivity changes induced by cocaine in vivo. CONCLUSIONS: Our study originally demonstrates that a single administration of cocaine is able to induce stable synaptic rewiring in the nucleus accumbens, which will likely influence responses to subsequent drug exposure. It also unravels a new functional role for cocaine-induced extracellular signal-regulated kinase pathway independently of nuclear targets. Finally, it reveals that mitogen-activated protein kinase interacting kinase-1 has a pivotal role in cocaine-induced connectivity.


Subject(s)
Cocaine/pharmacology , Dopamine Uptake Inhibitors/pharmacology , Gene Expression Regulation/drug effects , MAP Kinase Kinase 1/metabolism , Neurogenesis/drug effects , Nucleus Accumbens/drug effects , Synapses/physiology , Animals , Dendritic Spines/drug effects , Enzyme Inhibitors/pharmacology , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neostriatum/metabolism , Nucleus Accumbens/cytology , Proto-Oncogene Proteins c-fos/metabolism , Receptors, Dopamine D1/metabolism , Sirolimus/pharmacology , Synapses/drug effects , Vesicular Glutamate Transport Protein 1/genetics , Vesicular Glutamate Transport Protein 1/metabolism
17.
Front Psychiatry ; 7: 160, 2016.
Article in English | MEDLINE | ID: mdl-27708591

ABSTRACT

Although smoking prevalence has declined in recent years, certain subpopulations continue to smoke at disproportionately high rates and show resistance to cessation treatments. Individuals showing cognitive and affective impairments, including emotional distress and deficits in attention, memory, and inhibitory control, particularly in the context of psychiatric conditions, such as attention-deficit hyperactivity disorder, schizophrenia, and mood disorders, are at higher risk for tobacco addiction. Nicotine has been shown to improve cognitive and emotional processing in some conditions, including during tobacco abstinence. Self-medication of cognitive deficits or negative affect has been proposed to underlie high rates of tobacco smoking among people with psychiatric disorders. However, pre-existing cognitive and mood disorders may also influence the development and maintenance of nicotine dependence, by biasing nicotine-induced alterations in information processing and associative learning, decision-making, and inhibitory control. Here, we discuss the potential forms of contribution of cognitive and affective deficits to nicotine addiction-related processes, by reviewing major clinical and preclinical studies investigating either the procognitive and therapeutic action of nicotine or the putative primary role of cognitive and emotional impairments in addiction-like features.

18.
Psychopharmacology (Berl) ; 233(10): 1823-8, 2016 05.
Article in English | MEDLINE | ID: mdl-26864774

ABSTRACT

RATIONALE: The endocannabinoid system is composed of endocannabinoids (such as anandamide), their target receptors (CB1 and CB2 receptors, CB1Rs and CB2Rs), the enzymes that degrade them (fatty-acid-amide-hydrolase (FAAH) for anandamide), and an endocannabinoid transporter. FAAH inhibition has been recently identified as having a critical involvement in behaviors related to nicotine addiction and has been shown to reduce the effect of nicotine on the mesolimbic dopaminergic system via CB1R and peroxisome proliferator-activated receptor alpha (PPARα). Thus, inhibition of FAAH may represent a novel strategy for smoking cessation, but its mechanism of action on relapse to nicotine seeking is still unknown. OBJECTIVE: The study aims to explore the mechanism of action of the inhibitor of FAAH activity, URB597, on relapse to nicotine seeking by evaluating the effect of the CB1R, CB2R, and PPARα antagonists on the attenuating effect of URB597 on cue-induced reinstatement of nicotine seeking in rats. RESULTS: URB597 reduced cue-induced reinstatement of nicotine seeking, an effect that was reversed by the CB1R antagonist rimonabant, but not by the CB2R or PPARα antagonists AM630 and MK886, respectively. CONCLUSIONS: These results indicate that URB597 reduces cue-induced reinstatement in rats through a CB1 receptor-dependent mechanism, and not via CB2R or PPARα. Since FAAH inhibition represent a novel and promising strategy for tobacco smoking cessation, dissecting how it produces its action may lead to a better understanding of the neurobiological mechanisms underlying nicotine addiction.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Benzamides/pharmacology , Cannabinoid Receptor Antagonists/pharmacology , Carbamates/pharmacology , Drug-Seeking Behavior/drug effects , Nicotine/administration & dosage , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Tobacco Use Disorder/drug therapy , Amidohydrolases/metabolism , Animals , Arachidonic Acids/metabolism , Cues , Endocannabinoids/metabolism , Male , PPAR alpha/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/metabolism , Pyrazoles/pharmacology , Rats , Rats, Long-Evans , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Rimonabant
19.
Article in English | MEDLINE | ID: mdl-24140878

ABSTRACT

Tobacco produces an impressive burden of disease resulting in premature death in half of users. Despite effective smoking cessation medications (nicotine replacement therapies, bupropion and varenicline), there is a very high rate of relapse following quit attempts. The use of efficient strategies for the development of novel treatments is a necessity. A 'bench to bedside strategy' was initially used to develop cannabinoid CB1 receptor antagonists for the treatment of nicotine addiction. Unfortunately, after being tested on experimental animals, what seemed to be an interesting approach for the treatment of nicotine addiction resulted in serious unwanted side effects when tested in humans. Current research is focusing again on pre-clinical models in an effort to eliminate unwanted side effects while preserving the initially observed efficacy. A 'bed side to bench strategy' was used to study the role of the insula (part of the frontal cortex) in nicotine addiction. This line of research started based on clinical observations that patients suffering stroke-induced lesions to the insula showed a greater likelihood to report immediate smoking cessation without craving or relapse. Subsequently, animal models of addiction are used to explore the role of insula in addiction. Due to the inherent limitations existing in clinical versus preclinical studies, the possibility of close interaction between both models seems to be critical for the successful development of novel therapeutic strategies for nicotine dependence.


Subject(s)
Smoking Cessation/methods , Tobacco Use Disorder/therapy , Translational Research, Biomedical , Animals , Humans
20.
Am J Transl Res ; 4(4): 422-31, 2012.
Article in English | MEDLINE | ID: mdl-23145210

ABSTRACT

Extinction bursts are characterized by a temporary increase in responding when drug access is withheld from rats trained to self-administer drugs of abuse. Thus far, one study has examined extinction bursts for nicotine self-administration using a 23-h access paradigm [1]. Here we examined extinction bursts using previously published and unpublished data in which rats were trained to self-administer nicotine (0.03mg/kg/infusion) or food pellets (as a comparator) in 1-h sessions under an FR5 schedule of reinforcement followed by 1-h extinction sessions. Analysis of response rates during nicotine self-administration (NSA) was indicative of a loading phase, as response rates were significantly higher at the beginning of the session, which was not observed for food self-administration. At the start of extinction for both food and nicotine, although sessional response rates did not increase, there was an increase in response rate during the first 5-min of the first extinction session relative to self-administration. This transient extinction burst following nicotine was observed in a minority of subjects and correlated with the number of nicotine infusions obtained during self-administration. This transient extinction burst following food was observed in all subjects. Nicotine and food produce more transient extinction bursts compared to other drugs of abuse and only for a minority of animals in the case of nicotine. This study supports the presence of a loading phase in rats trained to self-administer nicotine in 1-r daily sessions and the presence of a transient extinction burst.

SELECTION OF CITATIONS
SEARCH DETAIL
...