Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D476-D482, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37986218

ABSTRACT

The incorporation of non-canonical amino acids (ncAAs) into proteins is a powerful technique used in various research fields. Genetic code expansion (GCE) is the most common way to achieve this: a specific codon is selected to be decoded by a dedicated tRNA orthogonal to the endogenous ones. In the past 30 years, great progress has been made to obtain novel tRNA synthetases (aaRSs) accepting a variety of ncAAs with distinct physicochemical properties, to develop robust in vitro assays or approaches for codon reassignment. This sparked the use of the technique, leading to the accumulation of publications, from which gathering all relevant information can appear daunting. Here we present iNClusive (https://non-canonical-aas.biologie.uni-freiburg.de/), a manually curated, extensive repository using standardized nomenclature that provides organized information on ncAAs successfully incorporated into target proteins as verified by mass spectrometry. Since we focused on tRNA synthetase-based tRNA loading, we provide the sequence of the tRNA and aaRS used for the incorporation. Derived from more than 687 peer-reviewed publications, it currently contains 2432 entries about 466 ncAAs, 569 protein targets, 500 aaRSs and 144 tRNAs. We foresee iNClusive will encourage more researchers to experiment with ncAA incorporation thus contributing to the further development of this exciting technique.


Subject(s)
Amino Acid Sequence , Amino Acids , Databases, Protein , Proteins , Amino Acids/chemistry , Amino Acids/metabolism , Codon/genetics , Genetic Code , Proteins/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Internet
2.
ACS Synth Biol ; 11(10): 3529-3533, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36180042

ABSTRACT

The optogenetic tool LEXY consists of the second light oxygen voltage (LOV) domain of Avena sativa phototropin 1 mutated to contain a nuclear export signal. It allows exporting from the nucleus with blue light proteins of interest (POIs) genetically fused to it. Mutations slowing the dark recovery rate of the LOV domain within LEXY were recently shown to allow for better depletion of some POIs from the nucleus in Drosophila embryos and for the usage of low light illumination regimes. We investigated these variants in mammalian cells and found they increase the cytoplasmic localization of the proteins we tested after illumination, but also during the dark phases, which corresponds to higher leakiness of the system. These data suggest that, when aiming to sequester into the nucleus a protein with a cytoplasmic function, the original LEXY is preferable. The iLEXY variants are, instead, advantageous when wanting to deplete the nucleus of the POI as much as possible.


Subject(s)
Nuclear Proteins , Phototropins , Animals , Phototropins/genetics , Phototropins/metabolism , Nuclear Proteins/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 14/metabolism , Nuclear Export Signals/genetics , Light , Avena/genetics , Avena/metabolism , Oxygen/metabolism , Mammals/metabolism
3.
J Biochem ; 169(3): 273-286, 2021 Apr 18.
Article in English | MEDLINE | ID: mdl-33245128

ABSTRACT

The nucleus is a very complex organelle present in eukaryotic cells. Having the crucial task to safeguard, organize and manage the genetic information, it must tightly control its molecular constituents, its shape and its internal architecture at any given time. Despite our vast knowledge of nuclear cell biology, much is yet to be unravelled. For instance, only recently we came to appreciate the existence of a dynamic nuclear cytoskeleton made of actin filaments that regulates processes such as gene expression, DNA repair and nuclear expansion. This suggests further exciting discoveries ahead of us. Modern cell biologists embrace a new methodology relying on precise perturbations of cellular processes that require a reversible, highly spatially confinable, rapid, inexpensive and tunEable external stimulus: light. In this review, we discuss how optogenetics, the state-of-the-art technology that uses genetically encoded light-sensitive proteins to steer biological processes, can be adopted to specifically investigate nuclear cell biology.


Subject(s)
Cell Nucleus/metabolism , Optogenetics/methods , Actin Cytoskeleton/genetics , Actin Cytoskeleton/metabolism , Animals , Cell Biology , Cell Nucleus/genetics , Cytoskeleton/metabolism , Gene Expression Regulation , Humans , Light , Protein Engineering/methods , Protein Transport
4.
Nucleic Acids Res ; 46(3): 1470-1485, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29244160

ABSTRACT

In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.


Subject(s)
Bacterial Proteins/genetics , Catabolite Repression , Host Factor 1 Protein/genetics , Protein Biosynthesis , Pseudomonas aeruginosa/genetics , RNA, Bacterial/genetics , Repressor Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Bordetella pertussis/genetics , Bordetella pertussis/metabolism , Carbohydrate Metabolism/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/chemistry , Host Factor 1 Protein/metabolism , Kinetics , Models, Molecular , Nucleotide Motifs , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Pseudomonas aeruginosa/metabolism , RNA, Bacterial/chemistry , RNA, Bacterial/metabolism , Regulon , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL