Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(17): 3946-3957, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37039650

ABSTRACT

We model, via large-scale molecular dynamics simulations, the isothermal compression of low-density amorphous ice (LDA) to generate high-density amorphous ice (HDA) and the corresponding decompression extending to negative pressures to recover the low-density amorphous phase (LDAHDA). Both LDA and HDA are nearly hyperuniform and are characterized by a dynamical HBN, showing that amorphous ices are nonstatic materials and implying that nearly hyperuniformity can be accommodated in dynamical networks. In correspondence with both the LDA-to-HDA and the HDA-to-LDAHDA phase transitions, the (partial) activation of rotational degrees of freedom activates a cascade effect that induces a drastic change in the connectivity and a pervasive reorganization of the HBN topology which, ultimately, break the samples' hyperuniform character. Key to this effect is the rapid rate at which changes occur, and not their magnitude. The inspection of structural properties from the short- to the long-range shows that signatures of metastability are present at all length-scales, hence providing further solid evidence in support of the liquid-liquid critical point scenario. LDA and LDAHDA differ in terms of HBN and structural properties, implying that they are distinct low-density glasses. Our work unveils the role of molecular rotations in the phase transitions between amorphous ices and shows how the unfreezing of rotational degrees of freedom generates a cascade effect that propagates over multiple length-scales. Our findings greatly improve our basic understanding of water and amorphous ices and can potentially impact the field of molecular network-forming materials at large.

2.
Soft Matter ; 17(8): 2223-2233, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33465214

ABSTRACT

Single-chain nanoparticles (SCNPs) are ultrasoft objects obtained through purely intramolecular cross-linking of single polymer chains. By means of computer simulations with implemented hydrodynamic interactions, we investigate for the first time the effect of the shear flow on the structural and dynamic properties of SCNPs in semidilute and concentrated solutions. We characterize the dependence of several conformational and dynamic observables on the shear rate and the concentration, obtaining a set of power-law scaling laws. The concentration has a very different effect on the shear rate dependence of the former observables in SCNPs than in simple linear chains. Whereas for the latter the scaling behaviour is marginally dependent on the concentration, two clearly different scaling regimes are found for the SCNPs below and above the overlap concentration. At fixed shear rate SCNPs and linear chains also respond very differently to crowding. Whereas, at moderate and high Weissenberg numbers the linear chains swell, the SCNPs exhibit a complex non-monotonic behaviour. We suggest that these findings are inherently related to the topological interactions preventing concatenation of the SCNPs, which lead to less interpenetration than for linear chains, and to the limitation to stretching imposed by the permanent cross-links in the SCNPs, which itself limits the ways to spatially arrange in the shear flow.

3.
J Phys Chem B ; 122(14): 4149-4158, 2018 04 12.
Article in English | MEDLINE | ID: mdl-29547293

ABSTRACT

Star block-copolymers (SBCs) have been demonstrated to constitute self-assembling building blocks with specific softness, functionalization, shape, and flexibility. In this work, we study the behavior of an isolated SBC under a shear flow by means of particle-based multiscale simulations. We systematically analyze the conformational properties of low-functionality stars, as well as the formation of attractive patches on their corona as a function of the shear rate. We cover a wide range of system parameters, including functionality, amphiphilicity, and solvent quality. It is shown that SBCs display a richer structural and dynamical behavior than athermal star polymers in a shear flow [ Ripoll Phys. Rev. Lett. , 2006 , 96 , 188302 ], and, therefore, they are also interesting candidates to tune the viscoelastic properties of complex fluids. We identify three factors of patch reorganization under shear that lead to patch numbers and orientations depending on the shear rate, namely, free arms joining existing patches, fusion of medium-sized patches into bigger ones, and fission of large patches into two smaller ones under high shear rates. Because the conformation of single SBC is expected to be preserved in low-density bulk phases, the presented results are a first step in understanding and predicting the rheological properties of semidilute suspensions of this kind of polymers.

4.
Soft Matter ; 13(37): 6430-6438, 2017 Sep 27.
Article in English | MEDLINE | ID: mdl-28876354

ABSTRACT

By means of molecular dynamics simulations, we investigate the formation of single-chain nanoparticles through intramolecular cross-linking of polymer chains, in the presence of their precursors acting as purely steric crowders in concentrated solution. In the case of linear precursors, the structure of the resulting SCNPs is weakly affected by the density at which the synthesis is performed. Crowding has significant effects if ring precursors are used: higher concentrations lead to the formation of SCNPs with more compact and spherical morphologies. Such SCNPs retain in the swollen state (high dilution) the crumpled globular conformations adopted by the ring precursors in the crowded solutions. Increasing the concentration of both the linear and ring precursors up to 30% leads to faster formation of the respective SCNPs, prior to deceleration expected at higher densities. The results presented here propose promising new routes for the synthesis of globular SCNPs, which are usually elusive by conventional methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...