Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 11(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803099

ABSTRACT

The effect of the morphology and chemical composition of a surface on the wettability of porous silicon structures is analyzed in the present work. Hydrophobic and superhydrophobic macroporous substrates are attractive for different potential applications. Herein, different hydrophobic macroporous silicon structures were fabricated by the chemical etching of p-type silicon wafers in a solution based on hydrofluoric acid and coated with a fluoro silane self-assembled monolayer. The surface morphology of the final substrate was characterized using a scanning electron microscope. The wettability was assessed from contact angle measurements using water and organic solvents that present low surface energy. The experimental data were compared with the classical wetting states theoretical models described in the literature. Perfluoro-silane functionalized macroporous silicon surfaces presented systematically higher contact angles than untreated silicon substrates. The influence of porosity on the surface wettability of macoporous silicon structures has been established. These results suggest that the combination of etching conditions with a surface chemistry modification could lead to hydrophobic/oleophilic or superhydrophobic/oleophobic structures.

2.
Beilstein J Nanotechnol ; 8: 675-681, 2017.
Article in English | MEDLINE | ID: mdl-28462069

ABSTRACT

Background: Micro- and nanoscale substrates have been fabricated in order to study the influence of the topography on the cellular response. The aim of this work was to prepare different collagen-coated silicon substrates displaying grooves and ridges to mimic the aligned and elongated endothelium found in linear vessels, and to use them as substrates to study cell growth and behaviour. Results: The influence of groove-shaped substrates on cell adhesion, morphology and proliferation were assessed, by comparing them to flat silicon substrates, used as control condition. Using human aortic endothelial cells, microscopy images demonstrate that the cellular response is different depending on the silicon surface, when it comes to cell adhesion, morphology (alignment, circularity and filopodia presence) and proliferation. Moreover, these structures exerted no cytotoxic effect. Conclusion: The results suggest that topographical patterning influences cell response. Silicon groove substrates can be used in developing medical devices with microscale features to mimic the endothelium in lineal vessels.

3.
Nanoscale Res Lett ; 11(1): 372, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27550052

ABSTRACT

Controlled drug delivery systems are an encouraging solution to some drug disadvantages such as reduced solubility, deprived biodistribution, tissue damage, fast breakdown of the drug, cytotoxicity, or side effects. Self-ordered nanoporous anodic alumina is an auspicious material for drug delivery due to its biocompatibility, stability, and controllable pore geometry. Its use in drug delivery applications has been explored in several fields, including therapeutic devices for bone and dental tissue engineering, coronary stent implants, and carriers for transplanted cells. In this work, we have created and analyzed a stimuli-responsive drug delivery system based on layer-by-layer pH-responsive polyelectrolyte and nanoporous anodic alumina. The results demonstrate that it is possible to control the drug release using a polyelectrolyte multilayer coating that will act as a gate.

4.
N Biotechnol ; 33(6): 781-789, 2016 Dec 25.
Article in English | MEDLINE | ID: mdl-27432194

ABSTRACT

Native tissues are highly organised at the microscale, so that modulating scaffold microarchitecture is a potent tool to mimic natural tissue structures. Moreover, three-dimensional microtopographical features are now being used to elucidate how extracellular physical cues can directly modulate cell behaviour and organise complex cellular processes such as cell differentiation and tissue organisation. Recent advances in microtechnology have allowed the development of platforms that can be used to further understand and control the complex interactions occurring between biointerfaces and living cells. In this paper, we discuss the use of three-dimensional microstructured substrates such as silicon dioxide micropillars, to interface with living cells. Human aortic endothelial cells were used to assess the biocompatibility of these substrates. Methodological investigations were performed to determine the influence of substrate topography on cell adhesion and growth. The changes on cell spreading and cell morphology induced by the substrates were qualified and quantified using scanning electron and fluorescence confocal microscopy.


Subject(s)
Endothelial Cells/cytology , Biocompatible Materials , Biotechnology , Cell Adhesion , Cell Proliferation , Cells, Cultured , Endothelial Cells/physiology , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Silicon Dioxide , Surface Properties
5.
Small ; 11(36): 4626-31, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26097092

ABSTRACT

Multifunctional SiO2 microtubes for targeted drug delivery are produced with precise control over shape and size by combining lithography and electrochemical etching. The hollow core is loaded with a lipophilic anticancer drug generating nanopills and an antibody is conjugated to the external surface for cancer cell targeting. Results demonstrate selective killing of neuroblastoma cells that express the cognate receptor.


Subject(s)
Antineoplastic Agents/chemistry , Camptothecin/administration & dosage , Drug Delivery Systems , Nanomedicine/methods , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Electrochemistry , Humans , Microscopy, Confocal , Microscopy, Electron, Scanning , Microtubules/chemistry , Neoplasms/metabolism , Nerve Tissue Proteins/chemistry , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Receptors, Nerve Growth Factor/chemistry , Surface Properties
6.
J Colloid Interface Sci ; 452: 180-189, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-25942096

ABSTRACT

Porous silicon (pSi) is a prosperous biomaterial, biocompatible, and biodegradable. Obtaining regularly functionalized pSi surfaces is required in many biotechnology applications. Silane-PEG-NHS (triethoxysilane-polyethylene-glycol-N-hydroxysuccinimide) is useful for single-molecule studies due to its ability to attach to only one biomolecule. We investigate the functionalization of pSi with silane-PEG-NHS and compare it with two common grafting agents: APTMS (3-aminopropylotrimethoxysilane) as electrostatic linker, and APTMS modified with glutaraldehyde as covalent spacer. We show the arrangement of two proteins (collagen and bovine serum albumin) as a function of the functionalization and of the pore size. FTIR is used to demonstrate correct functionalization while fluorescence confocal microscopy reveals that silane-PEG-NHS results in a more uniform protein distribution. Reflection interference spectroscopy (RIfS) is used to estimate the attachment of linker and proteins. The results open a way to obtain homogenous chemical modified silicon supports with a great value in biosensing, drug delivery and cell biology.


Subject(s)
Collagen/chemistry , Polyethylene Glycols/chemistry , Serum Albumin, Bovine/chemistry , Silanes/chemistry , Silicon/chemistry , Succinimides/chemistry , Animals , Binding Sites , Biocompatible Materials , Cattle , Glutaral/chemistry , Isocyanates/chemistry , Porosity , Protein Binding , Static Electricity
7.
J Biomater Appl ; 30(4): 398-408, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26017716

ABSTRACT

Porous silicon has received much attention because of its optical properties and for its usefulness in cell-based biosensing, drug delivery, and tissue engineering applications. Surface properties of the biomaterial are associated with cell adhesion and with proliferation, migration, and differentiation. The present article analyzes the behavior of human aortic endothelial cells in macro- and nanoporous collagen-modified porous silicon samples. On both substrates, cells are well adhered and numerous. Confocal microscopy and scanning electron microscopy were employed to study the effects of porosity on the morphology of the cells. On macroporous silicon, filopodia is not observed but the cell spreads on the surface, increasing the lamellipodia surface which penetrates the macropore. On nanoporous silicon, multiple filopodia were found to branch out from the cell body. These results demonstrate that the pore size plays a key role in controlling the morphology and growth rate of human aortic endothelial cells, and that these forms of silicon can be used to control cell development in tissue engineering as well as in basic cell biology research.


Subject(s)
Aorta/cytology , Biocompatible Materials/chemistry , Collagen/chemistry , Endothelial Cells/cytology , Silicon/chemistry , Cell Adhesion , Cell Line , Cell Survival , Endothelial Cells/ultrastructure , Humans , Porosity , Surface Properties
8.
Nanoscale Res Lett ; 9(1): 421, 2014.
Article in English | MEDLINE | ID: mdl-25246859

ABSTRACT

Human aortic endothelial cells play a key role in the pathogenesis of atherosclerosis, which is a common, progressive, and multifactorial disease that is the clinical endpoint of an inflammatory process and endothelial dysfunction. Study and development of new therapies against cardiovascular disease must be tested in vitro cell models, prior to be evaluated in vivo. To this aim, new cell culture platforms are developed that allow cells to grow and respond to their environment in a realistic manner. In this work, the cell adhesion and morphology of endothelial cells are investigated on functionalized porous silicon substrates with two different pore size configurations: macroporous and nanoporous silicon. Herein, we modified the surfaces of porous silicon substrates by aminopropyl triethoxysilane, and we studied how different pore geometries induced different cellular response in the cell morphology and adhesion. The cell growth over the surface of porous silicon becomes an attractive field, especially for medical applications. Surface properties of the biomaterial are associated with cell adhesion and as well as, with proliferation, migration and differentiation.

9.
Nanoscale Res Lett ; 9(1): 411, 2014.
Article in English | MEDLINE | ID: mdl-25221455

ABSTRACT

We report on the fabrication of polyelectrolyte multilayer-coated hollow silicon dioxide micropillars as pH-responsive drug delivery systems. Silicon dioxide micropillars are based on macroporous silicon formed by electrochemical etching. Due to their hollow core capable of being loaded with chemically active agents, silicon dioxide micropillars provide additional function such as drug delivery system. The polyelectrolyte multilayer was assembled by the layer-by-layer technique based on the alternative deposition of cationic and anionic polyelectrolytes. The polyelectrolyte pair poly(allylamine hydrochloride) and sodium poly(styrene sulfonate) exhibited pH-responsive properties for the loading and release of a positively charged drug doxorubicin. The drug release rate was observed to be higher at pH 5.2 compared to that at pH 7.4. Furthermore, we assessed the effect of the number of polyelectrolyte bilayers on the drug release loading and release rate. Thus, this hybrid composite could be potentially applicable as a pH-controlled system for localized drug release.

10.
Nanoscale Res Lett ; 8(1): 385, 2013 Sep 13.
Article in English | MEDLINE | ID: mdl-24034270

ABSTRACT

We report the formation of two-dimensional disordered arrays of poly(methyl)methacrylate (PMMA) microcolumns with embedded single size distribution of Lu0.990Er0.520Yb0.490 nanocrystals, (Er,Yb):Lu2O3, using a disordered porous silicon template. The cubic (Er,Yb):Lu2O3 nanocrystals, which crystallize into the cubic system with Ia3¯ space group, were synthesized using the modified Pechini method. Electronic microscopic techniques were used to study the distribution of the nanocrystals in the PMMA columns. Cathodoluminescence was used to observe the visible luminescence of the particles. Red emission attributed to 4 F9/2 → 4I15/2 erbium transition is predominant in these new composites.

12.
Nanoscale Res Lett ; 7(1): 370, 2012 Jul 03.
Article in English | MEDLINE | ID: mdl-22759928

ABSTRACT

Here, we present a systematic study about the effect of the pore length and its diameter on the specular reflection in nanoporous anodic alumina. As we demonstrate, the specular reflection can be controlled at will by structural tuning (i.e., by designing the pore geometry). This makes it possible to produce a wide range of Fabry-Pérot interferometers based on nanoporous anodic alumina, which are envisaged for developing smart and accurate optical sensors in such research fields as biotechnology and medicine. Additionally, to systematize the responsiveness to external changes in optical sensors based on nanoporous anodic alumina, we put forward a barcode system based on the oscillations in the specular reflection.

13.
Inorg Chem ; 51(11): 6139-46, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22621467

ABSTRACT

Europium-doped lanthanum oxide (5 mol % Eu(3+):La(2)O(3)) was prepared by calcining europium-doped lanthanum hydroxide (5 mol % Eu(3+):La(OH)(3)) previously synthesized by a simple hydrothermal method. Interestingly, we observed different emission Eu(3+) signatures depending on the phase of the host (lanthanum oxide or hydroxide) by cathodoluminescence. Taking into account that lanthanum oxide easily rehydroxylates in air, for the first time, we report the use of cathodoluminiscence as a novel characterization technique to follow the lanthanum oxide rehydroxylation reaction versus time according to different annealing procedures. Additionally, differential thermal-thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction techniques were used to identify the phases formed from the Eu(3+):La(OH)(3) depending on temperature and to study the evolution of La(2)O(3) to La(OH)(3) versus time. The results showed that the higher the temperature and the longer the annealing time, the higher the resistance to rehydroxylation of the Eu(3+):La(2)O(3) sample.

14.
Nanoscale Res Lett ; 7(1): 228, 2012 Apr 19.
Article in English | MEDLINE | ID: mdl-22515214

ABSTRACT

We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.).

15.
Adv Mater ; 24(8): 1050-4, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22266815

ABSTRACT

Toward a smart optical biosensor based on nanoporous anodic alumina (NAA): by modifying the pore geometry in nanoporous anodic alumina we are able to change the effective medium at will and tune the photoluminescence of NAA. The oscillations in the PL spectrum are converted into exclusive barcodes, which are useful for developing optical biomedical sensors in the UV-Visible region.


Subject(s)
Aluminum Oxide/chemistry , Biosensing Techniques/methods , Nanopores , Optical Phenomena , Electrodes , Luminescent Measurements
16.
ACS Appl Mater Interfaces ; 3(6): 1925-32, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21539376

ABSTRACT

We present a systematic study about the influence of the main anodization parameters (i.e., anodization voltage ramp and hard anodization voltage) on the pore rearrangement in nanoporous anodic alumina during mild to hard anodization regime transition. To cover the ranges between mild and hard regimes, the anodization parameters were each set to three levels (i.e., 0.5, 1.0, and 2.0 V s(-1) for the anodization voltage ramp and 80, 110, and 140 V for the hard anodization voltage). To the best of our knowledge, this is the first rigorous study about this phenomenon, which is quantified indirectly by means of a nickel electrodeposition. It is found that pore rearrangement takes place in a relatively random manner. Large areas of pores remain blocked when the anodization regime changes from mild to hard and, under certain anodization conditions, a pore branching takes place based on the self-ordering mechanism at work during anodization. Furthermore, it is statistically demonstrated by means of a design of experiments strategy that the effect of the anodization voltage ramp on the pore rearrangement is practically negligible in contrast to the hard anodization voltage effect. It is expected that this study gives a better understanding of structural changes in nanoporous anodic alumina when anodization is switched from mild to hard regime. Furthermore, the resulting nanostructures could be used to develop a wide range of nanodevices (e.g., waveguides, 1D photonic crystals, Fabry-Pérot interferometers, hybrid mosaic arrays of nanowires).


Subject(s)
Aluminum Oxide/chemistry , Electrochemistry/methods , Nanostructures/chemistry , Nanotechnology/methods , Porosity
17.
J Org Chem ; 70(20): 8235-8, 2005 Sep 30.
Article in English | MEDLINE | ID: mdl-16277358

ABSTRACT

[Chemical reaction: see text] The reactions of a series of urea- and amide-substituted olefins with Grubbs' catalysts are presented. Depending on the substrate's nature, the formation of either cross-metathesis or isomerization products is observed. To favor the cross-metathesis products, the reactions have been carried out using a wide range of experimental conditions. Upon addition of monophenyl phosphoester to these reactions, the isomerization of the olefins is completely suppressed and the cross-metathesis products are obtained in up to 60% yield.

18.
J Org Chem ; 67(15): 5184-9, 2002 Jul 26.
Article in English | MEDLINE | ID: mdl-12126404

ABSTRACT

Three N-alkylpyridinium photosensitizers having chiral alkyl groups have been prepared by reacting 2,4,6-triphenylpyrylium tetrafluoroborate ion with (1R,2S)-(-)-norephedrine, (S)-(+)-2-(aminomethyl)pyrrolidine, and (R)-(-)-1-cyclohexylethylamine. Laser flash photolysis allows detection of the corresponding triplet excited states that are quenched by hydrogen atom donors and electron donors. Asymmetric quenching of the chiral triplet excited state was observed using enantiomerically pure 1,2-diamino cyclohexane as quencher. Low enantiomeric excess values (up to 7%) were measured for the photochemical cyclization of 5-methyl-4-hexenoic acid to its corresponding gamma-lactone using these chiral N-alkylpyridinium as photosensitizers.

SELECTION OF CITATIONS
SEARCH DETAIL
...