Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(12): 5926-5940, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38441238

ABSTRACT

Organic chemists have made and are still making enormous efforts toward the development of novel green catalytic synthesis. The necessity arises from the imperative of safeguarding human health and the environment, while ensuring efficient and sustainable chemical production. Within this context, electrocatalysis provides a framework for the design of new organic reactions under mild conditions. Undoubtedly, nanostructured materials are under the spotlight as the most popular and in most cases efficient platforms for advanced organic electrosynthesis. This Minireview focuses on the recent developments in the use of nanostructured electrocatalysts, highlighting the correlation between their chemical structures and resulting catalytic abilities, and pointing to future perspectives for their application in cutting-edge areas.

2.
ACS Catal ; 13(24): 16067-16077, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38125981

ABSTRACT

A strategy for the synthesis of a gold-based single-atom catalyst (SAC) via a one-step room temperature reduction of Au(III) salt and stabilization of Au(I) ions on nitrile-functionalized graphene (cyanographene; G-CN) is described. The graphene-supported G(CN)-Au catalyst exhibits a unique linear structure of the Au(I) active sites promoting a multistep mode of action in dehydrogenative coupling of organosilanes with alcohols under mild reaction conditions as proven by advanced XPS, XAFS, XANES, and EPR techniques along with DFT calculations. The linear structure being perfectly accessible toward the reactant molecules and the cyanographene-induced charge transfer resulting in the exclusive Au(I) valence state contribute to the superior efficiency of the emerging two-dimensional SAC. The developed G(CN)-Au SAC, despite its low metal loading (ca. 0.6 wt %), appear to be the most efficient catalyst for Si-H bond activation with a turnover frequency of up to 139,494 h-1 and high selectivities, significantly overcoming all reported homogeneous gold catalysts. Moreover, it can be easily prepared in a multigram batch scale, is recyclable, and works well toward more than 40 organosilanes. This work opens the door for applications of SACs with a linear structure of the active site for advanced catalytic applications.

3.
Angew Chem Int Ed Engl ; 62(48): e202313540, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-37801043

ABSTRACT

Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.

4.
ACS Photonics ; 10(9): 3291-3301, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37743938

ABSTRACT

We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.

5.
Chemistry ; 29(71): e202301708, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37740618

ABSTRACT

Carbon nanostructures (CNSs) are attractive components to attain nanocomposites, yet their hydrophobic nature and strong tendency to aggregate often limit their use in aqueous conditions and negatively impact their properties. In this work, carbon nanohorns (CNHs), multi-walled carbon nanotubes (CNTs), and graphene (G) are first oxidized, and then reacted to covalently anchor the self-assembling tripeptide L-Leu-D-Phe-D-Phe to improve their dispersibility in phosphate buffer, and favor the formation of hydrogels formed by the self-organizing L-Leu-D-Phe-D-Phe present in solution. The obtained nanocomposites are then characterized by transmission electron microscopy (TEM), oscillatory rheology, and conductivity measurements to gain useful insights as to the key factors that determine self-healing ability for the future design of this type of nanocomposites.

6.
ACS Nano ; 17(18): 18217-18226, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37668497

ABSTRACT

The high salinity of seawater often strongly affects the activity and stability of photocatalysts utilized for photodriven seawater splitting. The current investigation is focused on the photocatalyst H-TiO2/Cu2O, comprised of hydroxyl-enriched hollow mesoporous TiO2 microspheres containing incorporated Cu2O nanoparticles. The design of H-TiO2/Cu2O is based on the hypothesis that the respective hollow and mesoporous structure and hydrophilic surfaces of TiO2 microspheres would stabilize Cu2O nanoparticles in seawater and provide efficient and selective proton adsorption. H-TiO2/Cu2O shows hydrogen production performances of 45.7 mmol/(g·h) in simulated seawater and 17.9 mmol/(g·h) in natural seawater, respectively. An apparent quantum yield (AQY) in hydrogen production of 18.8% in water (and 14.9% in natural seawater) was obtained at 365 nm. Moreover, H-TiO2/Cu2O displays high stability and can maintain more than 90% hydrogen evolution activity in natural seawater for 30 h. A direct mass- and energy- transfer mechanism is proposed to clarify the superior performance of H-TiO2/Cu2O in seawater splitting.

7.
ACS Catal ; 13(15): 10205-10216, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37560189

ABSTRACT

Large-scale development of electrochemical cells is currently hindered by the lack of Earth-abundant electrocatalysts with high catalytic activity, product selectivity, and interfacial mass transfer. Herein, we developed an electrocatalyst fabrication approach which responds to these requirements by irradiating plasmonic titanium nitride (TiN) nanocubes self-assembled on a carbon gas diffusion layer in the presence of polymeric binders. The localized heating produced upon illumination creates unique conditions for the formation of TiN/F-doped carbon hybrids that show up to nearly 20 times the activity of the pristine electrodes. In alkaline conditions, they exhibit enhanced stability, a maximum H2O2 selectivity of 90%, and achieve a H2O2 productivity of 207 mmol gTiN-1 h-1 at 0.2 V vs RHE. A detailed electrochemical investigation with different electrode arrangements demonstrated the key role of nanocomposite formation to achieve high currents. In particular, an increased TiOxNy surface content promoted a higher H2O2 selectivity, and fluorinated nanocarbons imparted good stability to the electrodes due to their superhydrophobic properties.

8.
Adv Sci (Weinh) ; 10(26): e2303781, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37409444

ABSTRACT

The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.

9.
Chemistry ; 29(61): e202301740, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37522641

ABSTRACT

The design of highly active and structurally well-defined catalysts has become a crucial issue for heterogeneous catalysed reactions while reducing the amount of catalyst employed. Beside conventional synthetic routes, the employment of polynuclear transition metal complexes as catalysts or catalyst precursors has progressively intercepted a growing interest. These well-defined species promise to deliver catalytic systems where a strict control on the nuclearity allows to improve the catalytic performance while reducing the active phase loading. This study describes the development of a highly active and reusable palladium-based catalyst on alumina (Pd8 /Al2 O3 ) for Suzuki cross-coupling reactions. An octanuclear tiara-like palladium complex was selected as active phase precursor to give isolated Pd-clusters of ca. 1 nm in size on Al2 O3 . The catalyst was thoroughly characterised by several complementary techniques to assess its structural and chemical nature. The high specific activity of the catalyst has allowed to carry out the cross-coupling reaction in 30 min using only 0.12 mol % of Pd loading under very mild and green reaction conditions. Screening of various substrates and selectivity tests, combined with recycling and benchmarking experiments, have been used to highlight the great potentialities of this new Pd8 /Al2 O3 catalyst.

10.
ChemSusChem ; 16(21): e202300831, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37486452

ABSTRACT

2H-MoS2 is an appealing semiconductor because of its Earth-abundant nature, cheapness, and low toxicity. This material has shown promising catalytic activity for various energy-related processes, but its use in catalysis for C-C bond forming reactions towards useful organic compounds is still largely unexplored. The lack of examples in organic synthesis is mainly due to the intrinsic difficulties of using bulk 2H-MoS2 (e. g., low surface area), which implies the reliance on high catalytic loadings for obtaining acceptable yields. This makes the optimization process more expensive and tedious. Here, we report the development of a 2H-MoS2 -mediated synthesis of valuable bis(indolyl)methane derivatives, using indoles and benzaldehydes as starting materials. Exploiting the Design of Experiments (DoE) method, we identified the critical parameters affecting the catalytic performance of commercial 2H-MoS2 powder and optimized the reaction conditions. Lastly, we demonstrated that the catalytic system has versatility and good tolerance towards functional group variations of the reagents.

11.
Chemistry ; 29(55): e202301718, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37439718

ABSTRACT

The use of graphitic carbon nitride (g-CN) for the photocatalytic radical formylation of anilines, which represents a more sustainable and attractive alternative to the currently used approaches, is reported herein. Our operationally simple method occurs under mild conditions, employing air as an oxidant. In particular, the chemistry is driven by the ability of g-CN to reach an electronically excited state upon visible-light absorption, which has a suitable potential energy to trigger the formation of reactive α-amino radical species from anilines. Mechanistic investigations also proved the key role of the g-CN to form reactive superoxide radicals from O2 via single electron transfer. Importantly, this photocatalytic transformation provides a variety of functionalized formamides (15 examples, up to 89 % yield).

12.
Chem Mater ; 35(6): 2612-2623, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-37008408

ABSTRACT

A versatile approach to the production of cluster- and single atom-based thin-film electrode composites is presented. The developed TiO x N y -Ir catalyst was prepared from sputtered Ti-Ir alloy constituted of 0.8 ± 0.2 at % Ir in α-Ti solid solution. The Ti-Ir solid solution on the Ti metal foil substrate was anodically oxidized to form amorphous TiO2-Ir and later subjected to heat treatment in air and in ammonia to prepare the final catalyst. Detailed morphological, structural, compositional, and electrochemical characterization revealed a nanoporous film with Ir single atoms and clusters that are present throughout the entire film thickness and concentrated at the Ti/TiO x N y -Ir interface as a result of the anodic oxidation mechanism. The developed TiO x N y -Ir catalyst exhibits very high oxygen evolution reaction activity in 0.1 M HClO4, reaching 1460 A g-1 Ir at 1.6 V vs reference hydrogen electrode. The new preparation concept of single atom- and cluster-based thin-film catalysts has wide potential applications in electrocatalysis and beyond. In the present paper, a detailed description of the new and unique method and a high-performance thin film catalyst are provided along with directions for the future development of high-performance cluster and single-atom catalysts prepared from solid solutions.

13.
ACS Nano ; 17(1): 606-620, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36538410

ABSTRACT

The preparation of bulk quantities of 13C-labeled graphene materials is relevant for basic investigations and for practical applications. In addition, 13C-labeled graphene materials can be very useful in biological and environmental studies, as they may allow the detection of graphene or its derivatives in cells or organs. In this paper, we describe the synthesis of 13C-labeled graphene materials (few-layer graphene, FLG, and graphene oxide, GO) on a tens of mg scale, starting from 13C-labeled methane to afford carbon fibers, followed by liquid-phase exfoliation (FLG) or oxidation (GO). The materials have been characterized by several analytical and microscopic techniques, including Raman and nuclear magnetic resonance spectroscopies, thermogravimetric analysis, X-ray photoelectron spectroscopy, and X-ray powder diffraction. As a proof of concept, the distribution of the title compounds in cells has been investigated. In fact, the analysis of the 13C/12C ratio with isotope ratio mass spectrometry (IRMS) allows the detection and quantification of very small amounts of material in cells or biological compartments with high selectivity, even when the material has been degraded. During the treatment of 13C-labeled FLG with HepG2 cells, 4.1% of the applied dose was found in the mitochondrial fraction, while 4.9% ended up in the nuclear fraction. The rest of the dose did not enter into the cell and remained in the plasma membrane or in the culture media.


Subject(s)
Graphite , Graphite/chemistry , Oxidation-Reduction , Cell Membrane , Photoelectron Spectroscopy , X-Ray Diffraction
14.
ACS Appl Energy Mater ; 5(11): 13356-13366, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36465260

ABSTRACT

The integration of graphene oxide (GO) into nanostructured Bi2O3 electrocatalysts for CO2 reduction (CO2RR) brings up remarkable improvements in terms of performance toward formic acid (HCOOH) production. The GO scaffold is able to facilitate electron transfers toward the active Bi2O3 phase, amending for the high metal oxide (MO) intrinsic electric resistance, resulting in activation of the CO2 with smaller overpotential. Herein, the structure of the GO-MO nanocomposite is tailored according to two synthetic protocols, giving rise to two different nanostructures, one featuring reduced GO (rGO) supporting Bi@Bi2O3 core-shell nanoparticles (NP) and the other GO supporting fully oxidized Bi2O3 NP. The two structures differentiate in terms of electrocatalytic behavior, suggesting the importance of constructing a suitable interface between the nanocarbon and the MO, as well as between MO and metal.

15.
Angew Chem Int Ed Engl ; 61(43): e202210640, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36074040

ABSTRACT

Carbon nitride (CN) is a heterogeneous photocatalyst that combines good structural properties and a broad scope. The photocatalytic efficiency of CN is associated with the presence of defective and radical species. An accurate description of defective states-both at a local and extended level-is key to develop a thorough mechanistic understanding of the photophysics of CN. In turn, this will maximise the generation and usage of photogenerated charge carriers and minimise wasteful charge recombination. Here the influence of morphology and light-excitation on the number and chemical nature of radical defects is assessed. By exploiting the magnetic dipole-dipole coupling, the spatial distribution of native radicals in CN is derived with high precision. From the analysis an average distance in the range 1.99-2.34 nm is determined, which corresponds to pairs of radicals located approximately four tri-s-triazine units apart.

16.
Chem Sci ; 13(34): 9927-9939, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36128229

ABSTRACT

Graphitic carbon nitride (gCN) is an important heterogeneous metal-free catalytic material. Thermally induced post-synthetic modifications, such as amorphization and/or reduction, were recently used to enhance the photocatalytic response of these materials for certain classes of organic transformations, with structural defects possibly playing an important role. The knowledge of how these surface modifications modulate the photocatalytic response of gCN is therefore not only interesting from a fundamental point of view, but also necessary for the development and/or tuning of metal-free gCN systems with superior photo-catalytic properties. Herein, employing density functional theory calculations and combining both the periodic and molecular approaches, in conjunction with experimental EPR measurements, we demonstrate that different structural defects on the gCN surface generate distinctive radical defect states localized within the electronic bandgap, with only those correlated with amorphous and reduced gCN structures being photo-active. To this end, we (i) model defective gCN surfaces containing radical defect states; (ii) assess the interactions of these defects with the radical precursors involved in the photo-driven alkylation of electron-rich aromatic compounds (namely perfluoroalkyl iodides); and (iii) describe the photo-chemical processes triggering the initial step of that reaction at the gCN surface. We provide a coherent structure/photo-catalytic property relationship on defective gCN surfaces, elaborating how only specific defect types act as binding sites for the perfluoroalkyl iodide reagent and can favor a photo-induced charge transfer from the gCN surface to the molecule, thus triggering the perfluoroalkylation reaction.

17.
ChemSusChem ; 15(18): e202201094, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35789214

ABSTRACT

Recently, the field of dual photocatalysis has grown rapidly, to become one of the most powerful tools for the functionalization of organic molecules under mild conditions. In particular, the merging of Earth-abundant nickel-based catalytic systems with visible-light-activated photoredox catalysts has allowed the development of a number of unique green synthetic approaches. This goes in the direction of ensuring an effective and sustainable chemical production, while safeguarding human health and environment. Importantly, this relatively new branch of catalysis has inspired an interdisciplinary stream of research that spans from inorganic and organic chemistry to materials science, thus establishing itself as one dominant trend in modern organic synthesis. This Review aims at illustrating the milestones on the timeline evolution of the photocatalytic systems used, with a critical analysis toward novel applications based on the use of photoactive two-dimensional carbon-based nanostructures. Lastly, forward-looking opportunities within this intriguing research field are discussed.


Subject(s)
Nickel , Photochemical Processes , Carbon , Catalysis , Humans , Materials Science , Nickel/chemistry , Oxidation-Reduction
18.
Biosens Bioelectron ; 196: 113737, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34740116

ABSTRACT

Simplicity is one of the key feature for the spread of any successful technological product. Here, a method for rapid and low-cost fabrication of electrochemical biosensors is presented. This "plug, print & play" method involves inkjet-printing even in an office-like environment, without the need of highly specialized expertise or equipment, guaranteeing an ultra-fast idea to (scaled) prototype production time. The printed biosensors can be connected to a smartphone through its audio input for their impedance readout, demonstrating the validity of the system for point-of-care biosensing. Proper electrodes layout guarantees high sensitivity and is validated by finite element simulations. The introduction of a passivation method (wax printing) allowed to complete the devices fabrication process, increasing their sensitivity. Indeed, the wax allowed reducing the interference related to the parasitic currents flowing through the permeable coating of the employed substrates, which was used for the chemical sintering, thus avoiding the common thermal treatment after printing. As a case study, we used the devices to develop an electrochemical aptamer-based sensor for the rapid detection of neutrophil gelatinase-associated lipocalin (NGAL) in urine - a clinically important marker of acute kidney injury. The aptasensor platform is capable of detecting clinically relevant concentrations of NGAL with a simple and rapid smartphone readout. The developed technology may be extended in the future to continuous monitoring, taking advantage of its flexibility to integrate it in tubes, or to other diagnostic applications where cost/efficiency and rapidity of the research, development and implementation of point of care devices is a must.


Subject(s)
Biosensing Techniques , Electric Impedance , Electrodes , Smartphone , Technology
19.
Chem Rev ; 121(21): 13620-13697, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34644065

ABSTRACT

Supported single-metal atom catalysts (SACs) are constituted of isolated active metal centers, which are heterogenized on inert supports such as graphene, porous carbon, and metal oxides. Their thermal stability, electronic properties, and catalytic activities can be controlled via interactions between the single-metal atom center and neighboring heteroatoms such as nitrogen, oxygen, and sulfur. Due to the atomic dispersion of the active catalytic centers, the amount of metal required for catalysis can be decreased, thus offering new possibilities to control the selectivity of a given transformation as well as to improve catalyst turnover frequencies and turnover numbers. This review aims to comprehensively summarize the synthesis of Fe-SACs with a focus on anchoring single atoms (SA) on carbon/graphene supports. The characterization of these advanced materials using various spectroscopic techniques and their applications in diverse research areas are described. When applicable, mechanistic investigations conducted to understand the specific behavior of Fe-SACs-based catalysts are highlighted, including the use of theoretical models.


Subject(s)
Carbon , Iron , Carbon/chemistry , Catalysis , Iron/chemistry , Metals , Nitrogen/chemistry
20.
Nanomaterials (Basel) ; 11(9)2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34578575

ABSTRACT

Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...