Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Biotechnol ; 15: 59, 2015 Jun 23.
Article in English | MEDLINE | ID: mdl-26099939

ABSTRACT

BACKGROUND: As an alternative to chemical pesticides, paratransgenesis relies on transformation of symbiotic bacteria of an arthropod vector to deliver molecules that disrupt pathogen transmission. For over a decade paratransgenesis has remained a laboratory-based endeavor owing to regulatory concerns regarding introduction of transformed microorganisms into the environment. To facilitate field application of paratransgenic strategies, risk mitigation approaches that address environmental contamination and gene spread must be developed. RESULTS: Using biopolymer manipulation, we introduce a novel microencapsulation platform for containment and targeted delivery of engineered bacteria to the gut of a disease-transmitting arthropod. We demonstrate the first proof of principle of targeted delivery of EPA-approved Pantoea agglomerans E325 in a paratransgenic system to control spread of Pierce's Disease by glassy-winged sharpshooters, (Homalodisca vitripennis) under simulated field conditions. Engineered microcapsules may address regulatory concerns regarding containment of recombinant bacteria and environmental spread of foreign genetic material and may represent an important step in translating paratransgenic science beyond the lab and into the field. CONCLUSIONS: We present, for the first time, a microencapsulation strategy to deliver recombinant bacteria to an insect and demonstrate targeted release of bacteria into the physiologically relevant region of the insect gut. This is a first step toward addressing concerns related to field application of recombinant bacteria. Engineered microparticles may decrease environmental contamination, horizontal gene transfer and competition with native species by acting as a barrier between recombinant bacteria and the environment.


Subject(s)
Bacteria/genetics , Gene Transfer Techniques , Pantoea/genetics , Bacteria/pathogenicity , Drug Compounding
2.
Inorg Chem ; 52(1): 144-59, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23259486

ABSTRACT

Three complexes of Mn(III) with "scorpionate" type ligands have been investigated by a variety of physical techniques. The complexes are [Tp(2)Mn]SbF(6) (1), [Tp(2)*Mn]SbF(6) (2), and [{PhB(MeIm)(3)}(2)Mn](CF(3)SO(3)) (3a), where Tp(-) = hydrotris(pyrazolyl)borate anion, Tp*(-) = hydrotris(3,5-dimethylpyrazolyl)borate anion, and PhB(MeIm)(3)(-) = phenyltris(3-methylimidazol-2-yl)borate anion. The crystal structure of 3a is reported; the structures of 1 and 2 have been previously reported, but were reconfirmed in this work. The synthesis and characterization of [{PhB(MeIm)(3)}(2)Mn]Cl (3b) are also described. These complexes are of interest in that, in contrast to many hexacoordinate (pseudo-octahedral) complexes of Mn(III), they exhibit a low-spin (triplet) ground state, rather than the high-spin (quintet) ground state. Solid-state electronic absorption spectroscopy, SQUID magnetometry, and high-frequency and -field electron paramagnetic resonance (HFEPR) spectroscopy were applied. HFEPR, in particular, was useful in characterizing the S = 1 spin Hamiltonian parameters for complex 1, D = +19.97(1), E = 0.42(2) cm(-1), and for 2, D = +15.89(2), E = 0.04(1) cm(-1). In addition, frequency domain Fourier-transform THz-EPR spectroscopy, using coherent synchrotron radiation, was applied to 1 only and gave results in good agreement with HFEPR. Variable-temperature dc magnetic susceptibility measurements of 1 and 2 were also in good agreement with the HFEPR results. This magnitude of zero-field splitting (zfs) is over 4 times larger than that in comparable hexacoordinate Mn(III) systems with S = 2 ground states. Complexes 3a and 3b (i.e., regardless of counteranion) have a yet much larger magnitude zfs, which may be the result of unquenched orbital angular momentum so that the spin Hamiltonian model is not appropriate. The triplet ground state is rationalized in each complex by ligand-field theory (LFT) and by quantum chemistry theory, both density functional theory and unrestricted Hartree-Fock methods. This analysis also shows that spin-crossover behavior is not thermally accessible for these complexes as solids. The donor properties of the three different scorpionate ligands were further characterized using the LFT model that suggests that the tris(carbene)borate is a strong σ-donor with little or no π-bonding.


Subject(s)
Borates/chemistry , Coordination Complexes/chemistry , Manganese/chemistry , Methane/analogs & derivatives , Coordination Complexes/chemical synthesis , Crystallography, X-Ray , Methane/chemistry , Models, Molecular , Pyrazoles/chemistry , Quantum Theory
3.
Inorg Chem ; 46(10): 3792-4, 2007 May 14.
Article in English | MEDLINE | ID: mdl-17425307

ABSTRACT

Reaction of the tris(carbene)borate ligand PhB(MeIm)3- with [Mn(CO)3(tBuCN)Br]2 leads to the manganese(I) tricarbonyl complex PhB(MeIm)3Mn(CO)3. In contrast to related complexes that are air-stable, PhB(MeIm)3Mn(CO)3 is O2-sensitive and is converted to a homoleptic MnIV complex. IR and cyclic voltammetry measurements of these complexes establish the exceptionally strong donating nature of the tris(carbene)borate ligand.

SELECTION OF CITATIONS
SEARCH DETAIL