Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Front Immunol ; 15: 1386517, 2024.
Article in English | MEDLINE | ID: mdl-38812504

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive heterogeneous disease characterized by several alterations of the immune system prompting disease progression and treatment response. The therapies available for AML can affect lymphocyte function, limiting the efficacy of immunotherapy while hindering leukemia-specific immune reactions. Recently, the treatment based on Venetoclax (VEN), a specific B-cell lymphoma 2 (BCL-2) inhibitor, in combination with hypomethylating agents (HMAs) or low-dose cytarabine, has emerged as a promising clinical strategy in AML. To better understand the immunological effect of VEN treatment, we characterized the phenotype and immune checkpoint (IC) receptors' expression on CD4+ and CD8+ T cells from AML patients after the first and second cycle of HMA in combination with VEN. HMA and VEN treatment significantly increased the percentage of naïve CD8+ T cells and TIM-3+ CD4+ and CD8+ T cells and reduced cytokine-secreting non-suppressive T regulatory cells (Tregs). Of note, a comparison between AML patients treated with HMA only and HMA in combination with VEN revealed the specific contribution of VEN in modulating the immune cell repertoire. Indeed, the reduction of cytokine-secreting non-suppressive Tregs, the increased TIM-3 expression on CD8+ T cells, and the reduced co-expression of PD-1 and TIM-3 on both CD4+ and CD8+ T cells are all VEN-specific. Collectively, our study shed light on immune modulation induced by VEN treatment, providing the rationale for a novel therapeutic combination of VEN and IC inhibitors in AML patients.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic , CD8-Positive T-Lymphocytes , Hepatitis A Virus Cellular Receptor 2 , Leukemia, Myeloid, Acute , Programmed Cell Death 1 Receptor , Sulfonamides , T-Lymphocytes, Regulatory , Humans , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/drug therapy , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Sulfonamides/administration & dosage , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Hepatitis A Virus Cellular Receptor 2/metabolism , Hepatitis A Virus Cellular Receptor 2/antagonists & inhibitors , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Middle Aged , Aged , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Female , Male , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Adult , Aged, 80 and over
2.
Nat Commun ; 14(1): 7725, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38001082

ABSTRACT

Current therapies for myeloproliferative neoplasms (MPNs) improve symptoms but have limited effect on tumor size. In preclinical studies, tamoxifen restored normal apoptosis in mutated hematopoietic stem/progenitor cells (HSPCs). TAMARIN Phase-II, multicenter, single-arm clinical trial assessed tamoxifen's safety and activity in patients with stable MPNs, no prior thrombotic events and mutated JAK2V617F, CALRins5 or CALRdel52 peripheral blood allele burden ≥20% (EudraCT 2015-005497-38). 38 patients were recruited over 112w and 32 completed 24w-treatment. The study's A'herns success criteria were met as the primary outcome ( ≥ 50% reduction in mutant allele burden at 24w) was observed in 3/38 patients. Secondary outcomes included ≥25% reduction at 24w (5/38), ≥50% reduction at 12w (0/38), thrombotic events (2/38), toxicities, hematological response, proportion of patients in each IWG-MRT response category and ELN response criteria. As exploratory outcomes, baseline analysis of HSPC transcriptome segregates responders and non-responders, suggesting a predictive signature. In responder HSPCs, longitudinal analysis shows high baseline expression of JAK-STAT signaling and oxidative phosphorylation genes, which are downregulated by tamoxifen. We further demonstrate in preclinical studies that in JAK2V617F+ cells, 4-hydroxytamoxifen inhibits mitochondrial complex-I, activates integrated stress response and decreases pathogenic JAK2-signaling. These results warrant further investigation of tamoxifen in MPN, with careful consideration of thrombotic risk.


Subject(s)
Myeloproliferative Disorders , Neoplasms , Humans , Myeloproliferative Disorders/drug therapy , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Hematopoietic Stem Cells/metabolism , Signal Transduction , Neoplasms/metabolism , Tamoxifen/therapeutic use , Tamoxifen/metabolism , Mutation , Calreticulin/genetics , Calreticulin/metabolism
3.
Front Immunol ; 14: 1085610, 2023.
Article in English | MEDLINE | ID: mdl-37207201

ABSTRACT

Introduction: Extracellular vesicles (EVs) and particles (EPs) represent reliable biomarkers for disease detection. Their role in the inflammatory microenvironment of severe COVID-19 patients is not well determined. Here, we characterized the immunophenotype, the lipidomic cargo and the functional activity of circulating EPs from severe COVID-19 patients (Co-19-EPs) and healthy controls (HC-EPs) correlating the data with the clinical parameters including the partial pressure of oxygen to fraction of inspired oxygen ratio (PaO2/FiO2) and the sequential organ failure assessment (SOFA) score. Methods: Peripheral blood (PB) was collected from COVID-19 patients (n=10) and HC (n=10). EPs were purified from platelet-poor plasma by size exclusion chromatography (SEC) and ultrafiltration. Plasma cytokines and EPs were characterized by multiplex bead-based assay. Quantitative lipidomic profiling of EPs was performed by liquid chromatography/mass spectrometry combined with quadrupole time-of-flight (LC/MS Q-TOF). Innate lymphoid cells (ILC) were characterized by flow cytometry after co-cultures with HC-EPs or Co-19-EPs. Results: We observed that EPs from severe COVID-19 patients: 1) display an altered surface signature as assessed by multiplex protein analysis; 2) are characterized by distinct lipidomic profiling; 3) show correlations between lipidomic profiling and disease aggressiveness scores; 4) fail to dampen type 2 innate lymphoid cells (ILC2) cytokine secretion. As a consequence, ILC2 from severe COVID-19 patients show a more activated phenotype due to the presence of Co-19-EPs. Discussion: In summary, these data highlight that abnormal circulating EPs promote ILC2-driven inflammatory signals in severe COVID-19 patients and support further exploration to unravel the role of EPs (and EVs) in COVID-19 pathogenesis.


Subject(s)
COVID-19 , Humans , Immunity, Innate , Lymphocytes , Cytokines , Oxygen
4.
Blood Adv ; 6(1): 165-180, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34654054

ABSTRACT

Epigenetic histone modifiers are key regulators of cell fate decisions in normal and malignant hematopoiesis. Their enzymatic activities are of particular significance as putative therapeutic targets in leukemia. In contrast, less is known about the contextual role in which those enzymatic activities are exercised and specifically how different macromolecular complexes configure the same enzymatic activity with distinct molecular and cellular consequences. We focus on KAT2A, a lysine acetyltransferase responsible for histone H3 lysine 9 acetylation, which we recently identified as a dependence in acute myeloid leukemia stem cells and that participates in 2 distinct macromolecular complexes: Ada two-A-containing (ATAC) and Spt-Ada-Gcn5-Acetyltransferase (SAGA). Through analysis of human cord blood hematopoietic stem cells and progenitors, and of myeloid leukemia cells, we identify unique respective contributions of the ATAC complex to regulation of biosynthetic activity in undifferentiated self-renewing cells and of the SAGA complex to stabilization or correct progression of cell type-specific programs with putative preservation of cell identity. Cell type and stage-specific dependencies on ATAC and SAGA-regulated programs explain multilevel KAT2A requirements in leukemia and in erythroid lineage specification and development. Importantly, they set a paradigm against which lineage specification and identity can be explored across developmental stem cell systems.


Subject(s)
Histone Acetyltransferases , Leukemia, Myeloid, Acute , Acetylation , Hematopoiesis , Histones/metabolism , Humans , Leukemia, Myeloid, Acute/metabolism
5.
Cancers (Basel) ; 13(21)2021 Oct 22.
Article in English | MEDLINE | ID: mdl-34771483

ABSTRACT

Acute myeloid leukemia (AML) has been considered for a long time exclusively driven by critical mutations in hematopoietic stem cells. Recently, the contribution of further players, such as stromal and immune bone marrow (BM) microenvironment components, to AML onset and progression has been pointed out. In particular, mesenchymal stromal cells (MSCs) steadily remodel the leukemic niche, not only favoring leukemic cell growth and development but also tuning their responsiveness to treatments. The list of mechanisms driven by MSCs to promote a leukemia drug-resistant phenotype has progressively expanded. Moreover, the relative proportion and the activation status of immune cells in the BM leukemic microenvironment may vary by influencing their reactivity against leukemic cells. In that, the capacity of the stroma to re-program immune cells, thus promoting and/or hampering therapeutic efficacy, is emerging as a crucial aspect in AML biology, adding an extra layer of complexity. Current treatments for AML have mainly focused on eradicating leukemia cells, with little consideration for the leukemia-damaged BM niche. Increasing evidence on the contribution of stromal and immune cells in response to therapy underscores the need to hold the mutual interplay, which takes place in the BM. A careful dissection of these interactions will help provide novel applications for drugs already under experimentation and open a wide array of opportunities for new drug discovery.

6.
Front Oncol ; 11: 728613, 2021.
Article in English | MEDLINE | ID: mdl-34660293

ABSTRACT

FMS-like tyrosine kinase 3 (FLT3) is among the most common driver genes recurrently mutated in acute myeloid leukemia (AML), accounting for approximately 30% of cases. Activating mutations of the FLT3 receptor include internal tandem duplications (ITD) that map to the auto-inhibitory juxtamembrane (JM) domain or point mutations within the tyrosine kinase domain (TKD). Several FLT3 tyrosine kinase inhibitors have been developed in the last few years, but midostaurin is currently the only one approved for the treatment of newly diagnosed patients harboring FLT3 mutations. Here we describe for the first time a novel in-frame deletion in exon 14 (JM domain) of the FLT3 gene, that we identified in a young woman with CBFb-MYH11-positive AML. We demonstrated that this novel FLT3 variant is pathogenic, since it is responsible for constitutive activation of FLT3 receptor. Finally, ex-vivo studies demonstrated that this novel mutation is sensitive to midostaurin.

7.
Genes (Basel) ; 12(3)2021 03 13.
Article in English | MEDLINE | ID: mdl-33805807

ABSTRACT

Blood cancers are a heterogeneous group of disorders including leukemia, multiple myeloma, and lymphoma. They may derive from the clonal evolution of the hemopoietic stem cell compartment or from the transformation of progenitors with immune potential. Extracellular vesicles (EVs) are membrane-bound nanovesicles which are released by cells into body fluids with a role in intercellular communication in physiology and pathology, including cancer. EV cargos are enriched in nucleic acids, proteins, and lipids, and these molecules can be delivered to target cells to influence their biological properties and modify surrounding or distant targets. In this review, we will describe the "smart strategy" on how blood cancer-derived EVs modulate tumor cell development and maintenance. Moreover, we will also depict the function of microenvironment-derived EVs in blood cancers and discuss how the interplay between tumor and microenvironment affects blood cancer cell growth and spreading, immune response, angiogenesis, thrombogenicity, and drug resistance. The potential of EVs as non-invasive biomarkers will be also discussed. Lastly, we discuss the clinical application viewpoint of EVs in blood cancers. Overall, blood cancers apply a 'vesicular intelligence' strategy to spread signals over their microenvironment, promoting the development and/or maintenance of the malignant clone.


Subject(s)
Extracellular Vesicles/metabolism , Extracellular Vesicles/pathology , Neoplasms/metabolism , Neoplasms/pathology , Animals , Biomarkers, Tumor/metabolism , Cell Communication/physiology , Humans , Tumor Microenvironment/physiology
9.
J Exp Clin Cancer Res ; 40(1): 49, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33522952

ABSTRACT

BACKGROUND: Myelofibrosis (MF) is a clonal disorder of hemopoietic stem/progenitor cells (HSPCs) with high prevalence in elderly patients and mutations in three driver genes (JAK2, MPL, or CALR). Around 10-15% of patients are triple-negative (TN) for the three driver mutations and display significantly worse survival. Circulating extracellular vesicles (EVs) play a role in intercellular signaling and are increased in inflammation and cancer. To identify a biomolecular signature of TN patients, we comparatively evaluated the circulating HSPCs and their functional interplay with the microenvironment focusing on EV analysis. METHODS: Peripheral blood was collected from MF patients (n = 29; JAK2V617F mutation, n = 23; TN, n = 6) and healthy donors (HD, n = 10). Immunomagnetically isolated CD34+ cells were characterized by gene expression profiling analysis (GEP), survival, migration, and clonogenic ability. EVs were purified from platelet-poor plasma by ultracentrifugation, quantified using the Nanosight technology and phenotypically characterized by flow cytometry together with microRNA expression. Migration and survival of CD34+ cells from patients were also analyzed after in vitro treatments with selected inflammatory factors, i.e. (Interleukin (IL)-1ß, Tumor Necrosis Factor (TNF)-α, IL6) or after co-culture with EVs from MF patients/HD. RESULTS: The absolute numbers of circulating CD34+ cells were massively increased in TN patients. We found that TN CD34+ cells show in vitro defective functions and are unresponsive to the inflammatory microenvironment. Of note, the plasma levels of crucial inflammatory cytokines are mostly within the normal range in TN patients. Compared to JAK2V617F-mutated patients, the GEP of TN CD34+ cells revealed distinct signatures in key pathways such as survival, cell adhesion, and inflammation. Importantly, we observed the presence of mitochondrial components within plasma EVs and a distinct phenotype in TN-derived EVs compared to the JAK2V617F-mutated MF patients and HD counterparts. Notably, TN EVs promoted the survival of TN CD34+ cells. Along with a specific microRNA signature, the circulating EVs from TN patients are enriched with miR-361-5p. CONCLUSIONS: Distinct EV-driven signals from the microenvironment are capable to promote the TN malignant hemopoiesis and their further investigation paves the way toward novel therapeutic approaches for rare MF.


Subject(s)
Antigens, CD34/metabolism , Extracellular Vesicles/metabolism , Hematopoietic Stem Cells/metabolism , Primary Myelofibrosis/metabolism , Biomarkers , Cells, Cultured , Cytokines/metabolism , Disease Progression , Female , Gene Expression Profiling , Hematopoietic Stem Cells/pathology , Humans , Immunophenotyping , Inflammation/metabolism , Inflammation Mediators/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/etiology , Severity of Illness Index
10.
Cell Metab ; 32(5): 829-843.e9, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32966766

ABSTRACT

Like normal hematopoietic stem cells, leukemic stem cells depend on their bone marrow (BM) microenvironment for survival, but the underlying mechanisms remain largely unknown. We have studied the contribution of nestin+ BM mesenchymal stem cells (BMSCs) to MLL-AF9-driven acute myeloid leukemia (AML) development and chemoresistance in vivo. Unlike bulk stroma, nestin+ BMSC numbers are not reduced in AML, but their function changes to support AML cells, at the expense of non-mutated hematopoietic stem cells (HSCs). Nestin+ cell depletion delays leukemogenesis in primary AML mice and selectively decreases AML, but not normal, cells in chimeric mice. Nestin+ BMSCs support survival and chemotherapy relapse of AML through increased oxidative phosphorylation, tricarboxylic acid (TCA) cycle activity, and glutathione (GSH)-mediated antioxidant defense. Therefore, AML cells co-opt energy sources and antioxidant defense mechanisms from BMSCs to survive chemotherapy.


Subject(s)
Antioxidants/metabolism , Bone Marrow/metabolism , Leukemia, Myeloid, Acute/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Antineoplastic Agents/therapeutic use , Cells, Cultured , Energy Metabolism , Female , Humans , Leukemia, Myeloid, Acute/therapy , Male , Mice , Mice, Inbred C57BL , Middle Aged
11.
Oncoimmunology ; 9(1): 1782575, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32923146

ABSTRACT

Myelofibrosis (MF) is characterized by chronic inflammation and hyper-activation of the JAK-STAT pathway. Infections are one of the main causes of morbidity/mortality. Therapy with Ruxolitinib (RUX), a JAK1/2 inhibitor, may further increase the infectious risk. Monocytes are critical players in inflammation/immunity through cytokine production and release of bioactive extracellular vesicles. However, the functional behavior of MF monocytes, particularly during RUX therapy, is still unclear. In this study, we found that monocytes from JAK2V617F-mutated MF patients show an altered expression of chemokine (CCR2, CXCR3, CCR5) and cytokine (TNF-α-R, IL10-R, IL1ß-R, IL6-R) receptors. Furthermore, their ability to produce and secrete free and extracellular vesicles-linked cytokines (IL1ß, TNF-α, IL6, IL10) under lipopolysaccharides (LPS) stimulation is severely impaired. Interestingly, monocytes from RUX-treated patients show normal level of chemokine, IL10, IL1ß, and IL6 receptors together with a restored ability to produce intracellular and to secrete extracellular vesicles-linked cytokines after LPS stimulation. Conversely, RUX therapy does not normalize TNF-R1/2 receptors expression and the LPS-driven secretion of free pro/anti-inflammatory cytokines. Accordingly, upon LPS stimulation, in vitro RUX treatment of monocytes from MF patients increases their secretion of extracellular vesicles-linked cytokines but inhibits the secretion of free pro/anti-inflammatory cytokines. In conclusion, we demonstrated that in MF the infection-driven response of circulating monocytes is defective. Importantly, RUX promotes their infection-driven cytokine production suggesting that infections following RUX therapy may not be due to monocyte failure. These findings contribute to better interpreting the immune vulnerability of MF and to envisaging strategies to improve the infection-driven immune response.


Subject(s)
Primary Myelofibrosis , Cytokines , Humans , Lipopolysaccharides , Monocytes , Primary Myelofibrosis/drug therapy , Tumor Necrosis Factor-alpha
12.
Front Oncol ; 10: 1225, 2020.
Article in English | MEDLINE | ID: mdl-32793492

ABSTRACT

The contribution of cell-extrinsic factors in Acute Myeloid Leukemia (AML) generation and persistence has gained interest. Bitter taste receptors (TAS2Rs) are G protein-coupled receptors known for their primary role as a central warning signal to induce aversion toward noxious or harmful substances. Nevertheless, the increasing amount of evidence about their extra-oral localization has suggested a wider function in sensing microenvironment, also in cancer settings. In this study, we found that AML cells express functional TAS2Rs. We also highlighted a significant association between the modulation of some TAS2Rs and the poor-prognosis AML groups, i.e., TP53- and TET2-mutated, supporting a potential role of TAS2Rs in AML cell biology. Gene expression profile analysis showed that TAS2R activation with the prototypical agonist, denatonium benzoate, significantly modulated a number of genes involved in relevant AML cellular processes. Functional assay substantiated molecular data and indicated that denatonium reduced AML cell proliferation by inducing cell cycle arrest in G0/G1 phase or induced apoptosis via caspase cascade activation. Moreover, denatonium exposure impaired AML cell motility and migratory capacity, and inhibited cellular respiration by decreasing glucose uptake and oxidative phosphorylation. In conclusion, our results in AML cells expand the observation of cancer TAS2R expression to the setting of hematological neoplasms and shed light on a role of TAS2Rs in the extrinsic regulation of leukemia cell functions.

13.
Int J Mol Sci ; 21(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403407

ABSTRACT

Growing evidence highlights the endocannabinoid (EC) system involvement in cancer progression. Lipid mediators of this system are secreted by hematopoietic cells, including the ECs 2-arachidonoyl-glycerol (2AG) and arachidonoyl-ethanolamide (AEA), the 2AG metabolite 1AG, and members of N-acylethanolamine (NAE) family-palmitoyl-ethanolamide (PEA) and oleoyl-ethanolamide (OEA). However, the relevance of the EC system in myeloproliferative neoplasms (MPN) was never investigated. We explored the EC plasma profile in 55 MPN patients, including myelofibrosis (MF; n = 41), polycythemia vera (PV; n = 9), and essential thrombocythemia (ET; n = 5) subclasses and in 10 healthy controls (HC). AEA, PEA, OEA, 2AG, and 1AG plasma levels were measured by LC-MS/MS. Overall considered, MPN patients displayed similar EC and NAE levels compared to HC. Nonetheless, AEA levels in MPN were directly associated with the platelet count. MF patients showed higher levels of the sum of 2AG and 1AG compared to ET and PV patients, higher OEA/AEA ratios compared to HC and ET patients, and higher OEA/PEA ratios compared to HC. Furthermore, the sum of 2AG and 1AG positively correlated with JAK2V617F variant allele frequency and splenomegaly in MF and was elevated in high-risk PV patients compared to in low-risk PV patients. In conclusion, our work revealed specific alterations of ECs and NAE plasma profile in MPN subclasses and potentially relevant associations with disease severity.


Subject(s)
Endocannabinoids/blood , Ethanolamines/blood , Myeloproliferative Disorders/blood , Polycythemia Vera/blood , Primary Myelofibrosis/blood , Thrombocythemia, Essential/blood , Adult , Aged , Aged, 80 and over , Amides/blood , Arachidonic Acids/blood , Chromatography, Liquid/methods , Female , Glycerides/blood , Humans , Janus Kinase 2/genetics , Male , Middle Aged , Mutation, Missense , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Oleic Acids/blood , Palmitic Acids/blood , Polycythemia Vera/diagnosis , Polycythemia Vera/genetics , Polyunsaturated Alkamides/blood , Primary Myelofibrosis/diagnosis , Primary Myelofibrosis/genetics , Tandem Mass Spectrometry/methods , Thrombocythemia, Essential/diagnosis , Thrombocythemia, Essential/genetics
14.
Hematol Oncol ; 38(3): 372-380, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32271957

ABSTRACT

The impact of ruxolitinib therapy on evolution to blast phase (BP) in patients with myelofibrosis (MF) is still uncertain. In 589 MF patients treated with ruxolitinib, we investigated incidence and risk factors for BP and we described outcome according to disease characteristics and treatment strategy. After a median follow-up from ruxolitinib start of 3 years (range 0.1-7.6), 65 (11%) patients transformed to BP during (93.8%) or after treatment. BP incidence rate was 3.7 per 100 patient-years, comparably in primary and secondary MF (PMF/SMF) but significantly lower in intermediate-1 risk patients (2.3 vs 5.6 per 100 patient-years in intermediate-2/high-risk patients, P < .001). In PMF and SMF cohorts, previous interferon therapy seemed to correlate with a lower probability of BP (HR 0.13, P = .001 and HR 0.22, P = .02, respectively). In SMF, also platelet count <150 × 109 /l (HR 2.4, P = .03) and peripheral blasts ≥3% (HR 3.3, P = .004) were significantly associated with higher risk of BP. High-risk category according to dynamic International Prognostic Score System (DIPSS) and myelofibrosis secondary to PV and ET Collaboration Prognostic Model (MYSEC-PM predicted BP in patients with PMF and SMF, respectively. Median survival after BP was 0.2 (95% CI: 0.1-0.3) years. Therapy for BP included hypomethylating agents (12.3%), induction chemotherapy (9.2%), allogeneic transplant (6.2%) or supportive care (72.3%). Patients treated with supportive therapy had a median survival of 6 weeks, while 73% of the few transplanted patients were alive at a median follow-up of 2 years. Progression to BP occurs in a significant fraction of ruxolitinib-treated patients and is associated with DIPSS and MYSEC-PM risk in PMF and SMF, respectively.


Subject(s)
Blast Crisis/mortality , Janus Kinases/antagonists & inhibitors , Primary Myelofibrosis/mortality , Adult , Aged , Aged, 80 and over , Blast Crisis/drug therapy , Blast Crisis/pathology , Disease Progression , Female , Follow-Up Studies , Humans , Male , Middle Aged , Nitriles , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/pathology , Prognosis , Pyrazoles , Pyrimidines , Retrospective Studies , Survival Rate , Young Adult
15.
Haematologica ; 104(10): 1928-1934, 2019 10.
Article in English | MEDLINE | ID: mdl-31515356

ABSTRACT

In this review article, we present recent updates on the hematologic tumor microenvironment following the 3rd Scientific Workshop on the Haematological Tumour Microenvironment and its Therapeutic Targeting organized by the European School of Hematology, which took place at the Francis Crick Institute in London in February 2019. This review article is focused on recent scientific advances highlighted in the invited presentations at the meeting, which encompassed the normal and malignant niches supporting hematopoietic stem cells and their progeny. Given the precise focus, it does not discuss other relevant contributions in this field, which have been the scope of other recent reviews. The content covers basic research and possible clinical applications with the major therapeutic angle of utilizing basic knowledge to devise new strategies to target the tumor microenvironment in hematologic cancers. The review is structured in the following sections: (i) regulation of normal hematopoietic stem cell niches during development, adulthood and aging; (ii) metabolic adaptation and reprogramming in the tumor microenvironment; (iii) the key role of inflammation in reshaping the normal microenvironment and driving hematopoietic stem cell proliferation; (iv) current understanding of the tumor microenvironment in different malignancies, such as chronic lymphocytic leukemia, multiple myeloma, acute myeloid leukemia and myelodysplastic syndromes; and (v) the effects of therapies on the microenvironment and some opportunities to target the niche directly in order to improve current treatments.


Subject(s)
Hematologic Neoplasms/metabolism , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Tumor Microenvironment , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Hematopoietic Stem Cells/pathology , Humans
17.
Mediators Inflamm ; 2018: 5974613, 2018.
Article in English | MEDLINE | ID: mdl-30116149

ABSTRACT

Inflammation may play a role in cancer. However, the contribution of cytokine-mediated crosstalk between normal hemopoietic stem/progenitor cells (HSPCs) and their (inflammatory) microenvironment is largely elusive. Here we compared survival, phenotype, and function of neonatal (umbilical cord blood (CB)) and adult (normal G-CSF-mobilized peripheral blood (mPB)) CD34+ cells after in vitro exposure to combined crucial inflammatory factors such as interleukin- (IL-) 1ß, IL-6, tumor necrosis factor- (TNF-) α, or tissue inhibitor of metalloproteinases-1 (TIMP-1). To mimic bone marrow (BM) niche, coculture experiments with normal BM stromal cells (BMSCs) were also performed. We found that combined inflammatory cytokines increased only the in vitro survival of CB-derived CD34+ cells by reducing apoptosis. Conversely, selected combinations of inflammatory cytokines (IL-1ß + TNF-α, IL-6 + TNF-α, and IL-1ß + TNF-α + TIMP-1) mainly enhanced the in vitro CXCR4-driven migration of mPB-derived CD34+ cells. TNF-α, alone or in combination, upregulated CD44 and CD13 expression in both sources. Finally, BMSCs alone increased survival/migration of CB- and mPB-derived CD34+ cells at the same extent of the combined inflammatory cytokines; importantly, their copresence did not show additive/synergistic effect. Taken together, these data indicate that combined proinflammatory stimuli promote distinct in vitro functional activation of neonatal or adult normal HSPCs.


Subject(s)
Cell Movement , Cytokines/metabolism , Fetal Blood/metabolism , Hematopoietic Stem Cell Mobilization , Inflammation/metabolism , Leukocytes, Mononuclear/cytology , Antigens, CD34/metabolism , Apoptosis , Cell Survival , Coculture Techniques , Erythrocytes/cytology , Granulocyte Colony-Stimulating Factor , Humans , Phenotype
18.
Front Immunol ; 8: 1330, 2017.
Article in English | MEDLINE | ID: mdl-29097997

ABSTRACT

Natural killer (NK) cells are circulating CD3- lymphocytes, which express CD56 or CD16 and an array of inhibitory receptors, called killer-immunoglobulin-like receptors (KIRs). Alloreactive KIR-ligand mismatched NK cells crucially mediate the innate immune response and have a well-recognized antitumor activity. Adoptive immunotherapy with alloreactive NK cells determined promising clinical results in terms of response in acute myeloid leukemia (AML) patients and several data demonstrated that response can be influenced by the composition of NK graft. Several data show that there is a correlation between NK alloreactivity and clinical outcome: in a cohort of AML patients who received NK infusion with active disease, more alloreactive NK cell clones were found in the donor repertoire of responders than in non-responders. These findings demonstrate that the frequency of alloreactive NK cell clones influence clinical response in AML patients undergoing NK cell immunotherapy. In this work, we will review the most recent preclinical and clinical data about the impact of alloreactive NK cells features other than frequency of alloreactive clones and cytokine network status on their anti-leukemic activity. A better knowledge of these aspects is critical to maximize the effects of this therapy in AML patients.

19.
Oncoimmunology ; 6(10): e1345402, 2017.
Article in English | MEDLINE | ID: mdl-29123956

ABSTRACT

Myelofibrosis (MF) is a clonal neoplasia associated with chronic inflammation due to aberrant cytokine production. Mutations in Janus Kinase-2 (JAK2), calreticulin (CALR) and myeloproliferative leukemia protein (MPL) genes have been recently associated to MF and they all activate the JAK/STAT signaling pathway. Since this pathway is essential in shaping the immune response, we investigated the role of circulating immune subsets and cytokines in 38 patients (20 carrying JAK2(V617F),13 exon-9 CALR mutation and 5 triple negative). In comparison to healthy donors, patients presented a reduced amount of circulating dendritic cells (DCs) associated with a defective ability of monocytes in differentiating into DCs. In addition, we found a reduction in circulating T-helper (Th)1 and Th17 and hypo-functional innate lymphoid cells (ILC). Results analyzed according to the mutational status showed that patients carrying JAK2(V617F) mutation had a reduction in Th17, myeloid-DCs and effector Tregs as well as increased ILC1 and cytokine producing Tregs. The CALR mutated patients revealed high ILC3 levels, reduced Th1 and their monocytes had a reduced capacity to mature in vitro into fully committed DCs. Their Tregs were also less effective in inhibiting the proliferation of autologous effector T-cells due to an increased proliferative status induced by CALR mutation. Triple negative patients presented a reduced amount of total circulating CD3, effectors Tregs and Th1 with increased ILC1. Overall, we have demonstrated that in MF different mutations lead to phenotypic and functional alterations in different immune subsets that may have a potential role in disease progression and susceptibility to infections.

20.
Oncotarget ; 8(23): 37239-37249, 2017 Jun 06.
Article in English | MEDLINE | ID: mdl-28422729

ABSTRACT

Since low JAK2V617F allele burden (AB) has been detected also in healthy subjects, its clinical interpretation may be challenging in patients with chronic myeloproliferative neoplasms (MPNs). We tested 1087 subjects for JAK2V617F mutation on suspicion of hematological malignancy. Only 497 (45.7%) patients were positive. Here we present clinical and laboratory parameters of a cohort of 35/497 patients with an AB ≤ 3%.Overall, 22/35 (62.9%) received a WHO-defined diagnosis of MPN and in 14/35 cases (40%) diagnosis was supported by bone marrow (BM) histology (''Histology-based'' diagnosis). In patients that were unable or refused to perform BM evaluation, diagnosis relied on prospective clinical observation (12 cases, 34.3%) and molecular monitoring (6 cases, 17.1%) (''Clinical-based'' or ''Molecular-based'' diagnosis, respectively). In 11/35 (31.4%) patients, a low JAK2V617F AB was not conclusive of MPN. The probability to have a final hematological diagnosis (ET/PV/MF) was higher in patients with thrombocytosis than in patients with polyglobulia (73.7% vs 57.1%, respectively). The detection of AB ≥ 0.8% always corresponded to an overt MPN phenotype. The repetition of JAK2V617F evaluation over time timely detected the spontaneous expansion (11 cases) or reduction (4 cases) of JAK2V617F-positive clones and significantly oriented the diagnostic process.Our study confirms that histology is relevant to discriminate small foci of clonal hematopoiesis with uncertain clinical significance from a full blown disease. Remarkably, our data suggest that a cut-off of AB ≥ 0.8% is very indicative for the presence of a MPN. Monitoring of the AB over time emerged as a convenient and non-invasive method to assess clonal hematopoiesis expansion.


Subject(s)
Bone Marrow/pathology , Hematologic Neoplasms/epidemiology , Janus Kinase 2/genetics , Mutation/genetics , Myeloproliferative Disorders/epidemiology , Adult , Aged , Alleles , Cohort Studies , Female , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/genetics , Humans , Italy/epidemiology , Male , Middle Aged , Myeloproliferative Disorders/diagnosis , Myeloproliferative Disorders/genetics , Phenotype , Polycythemia Vera/genetics , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...