Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Macromol Biosci ; 23(8): e2300068, 2023 08.
Article in English | MEDLINE | ID: mdl-37315231

ABSTRACT

A bottom-up approach to fabricating monodisperse, two-component polymersomes that possess phase-separated ("patchy") chemical topology is presented. This approach is compared with already-existing top-down preparation methods for patchy polymer vesicles, such as film rehydration. These findings demonstrate a bottom-up, solvent-switch self-assembly approach that produces a high yield of nanoparticles of the target size, morphology, and surface topology for drug delivery applications, in this case patchy polymersomes of a diameter of ≈50 nm. In addition, an image processing algorithm to automatically calculate polymersome size distributions from transmission electron microscope images based on a series of pre-processing steps, image segmentation, and round object identification is presented.


Subject(s)
Nanoparticles , Polymers , Drug Delivery Systems , Microscopy , Solvents
2.
ACS Cent Sci ; 8(7): 891-904, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35912343

ABSTRACT

Phenotypic targeting requires the ability of the drug delivery system to discriminate over cell populations expressing a particular receptor combination. Such selectivity control can be achieved using multiplexed-multivalent carriers often decorated with multiple ligands. Here, we demonstrate that the promiscuity of a single ligand can be leveraged to create multiplexed-multivalent carriers achieving phenotypic targeting. We show how the cellular uptake of poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-(diisopropylamino)ethyl methacry-late) (PMPC-PDPA) polymersomes varies depending on the receptor expression among different cells. We investigate the PMPC-PDPA polymersome insertion at the single chain/receptor level using all-atom molecular modeling. We propose a theoretical statistical mechanics-based model for polymersome-cell association that explicitly considers the interaction of the polymersome with the cell glycocalyx shedding light on its effect on the polymersome binding. We validate our model experimentally and show that the binding energy is a nonlinear function, allowing us to tune the interaction by varying the radius and degree of polymerization. Finally, we show that PMPC-PDPA polymersomes can be used to target monocytes in vivo due to their promiscuous interaction with SRB1, CD36, and CD81.

3.
ACS Nano ; 16(9): 13761-13770, 2022 09 27.
Article in English | MEDLINE | ID: mdl-35904791

ABSTRACT

Soft robots, made from elastomers, easily bend and flex, but deformability constraints severely limit navigation through and within narrow, confined spaces. Using aqueous two-phase systems we print water-in-water constructs that, by aqueous phase-separation-induced self-assembly, produce ultrasoft liquid robots, termed aquabots, comprised of hierarchical structures that span in length scale from the nanoscopic to microsciopic, that are beyond the resolution limits of printing and overcome the deformability barrier. The exterior of the compartmentalized membranes is easily functionalized, for example, by binding enzymes, catalytic nanoparticles, and magnetic nanoparticles that impart sensitive magnetic responsiveness. These ultrasoft aquabots can adapt their shape for gripping and transporting objects and can be used for targeted photocatalysis, delivery, and release in confined and tortuous spaces. These biocompatible, multicompartmental, and multifunctional aquabots can be readily applied to medical micromanipulation, targeted cargo delivery, tissue engineering, and biomimetics.


Subject(s)
Biomimetics , Robotics , Elastomers/chemistry , Water
4.
ACS Macro Lett ; 10(8): 984-989, 2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34422455

ABSTRACT

We report the design, simulation, synthesis, and reversible self-assembly of nanofibrils using polyhistidine-based oligopeptides. The inclusion of aromatic amino acids in the histidine block produces distinct antiparallel ß-strands that lead to the formation of amyloid-like fibrils. The structures undergo self-assembly in response to a change in pH. This creates the potential to produce well-defined fibrils for biotechnological and biomedical applications that are pH-responsive in a physiologically relevant range.

5.
Nano Lett ; 21(17): 7116-7122, 2021 09 08.
Article in English | MEDLINE | ID: mdl-34448588

ABSTRACT

Fine control over the mechanical properties of thin sheets underpins transcytosis, cell shape, and morphogenesis. Applying these principles to artificial, liquid-based systems has led to reconfigurable materials for soft robotics, actuation, and chemical synthesis. However, progress is limited by a lack of synthetic two-dimensional membranes that exhibit tunable mechanical properties over a comparable range to that seen in nature. Here, we show that the bending modulus, B, of thin assemblies of nanoparticle surfactants (NPSs) at the oil-water interface can be varied continuously from sub-kBT to 106kBT, by varying the ligands and particles that comprise the NPS. We find extensive departure from continuum behavior, including enormous mechanical anisotropy and a power law relation between B and the buckling spectrum width. Our findings provide a platform for shape-changing liquid devices and motivate new theories for the description of thin-film wrinkling.


Subject(s)
Nanoparticles , Surface-Active Agents , Anisotropy
6.
Sci Adv ; 6(48)2020 11.
Article in English | MEDLINE | ID: mdl-33246953

ABSTRACT

The blood-brain barrier is made of polarized brain endothelial cells (BECs) phenotypically conditioned by the central nervous system (CNS). Although transport across BECs is of paramount importance for nutrient uptake as well as ridding the brain of waste products, the intracellular sorting mechanisms that regulate successful receptor-mediated transcytosis in BECs remain to be elucidated. Here, we used a synthetic multivalent system with tunable avidity to the low-density lipoprotein receptor-related protein 1 (LRP1) to investigate the mechanisms of transport across BECs. We used a combination of conventional and super-resolution microscopy, both in vivo and in vitro, accompanied with biophysical modeling of transport kinetics and membrane-bound interactions to elucidate the role of membrane-sculpting protein syndapin-2 on fast transport via tubule formation. We show that high-avidity cargo biases the LRP1 toward internalization associated with fast degradation, while mid-avidity augments the formation of syndapin-2 tubular carriers promoting a fast shuttling across.

7.
Adv Drug Deliv Rev ; 160: 52-77, 2020.
Article in English | MEDLINE | ID: mdl-33031897

ABSTRACT

The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Peptides/chemistry , Administration, Intranasal , Animals , Biological Transport/physiology , Drug Implants , Humans , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry
8.
ACS Nano ; 14(9): 11215-11224, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32515582

ABSTRACT

Producing artificial multicellular structures to process multistep cascade reactions and mimic the fundamental aspects of living systems is an outstanding challenge. Highly biocompatible, artificial systems consisting of all-aqueous, compartmentalized multicellular systems have yet to be realized. Here, a rapid multilevel compartmentalization of an all-aqueous system where a 3D sheet of subcolloidosomes encloses a mother colloidosome by interfacial phase separation is demonstrated. These spatially organized multicellular structures are termed "blastosomes" since they are similar to blastula in appearance. The barrier to nanoparticle assembly at the water-water interface is overcome using oppositely charged polyelectrolytes that form a coacervate-nanoparticle-composite network. The conditions required to trigger interfacial phase separation and form blastosomes are quantified in a mapped state diagram. We show a versatile model for constructing artificial multicellular spheroids in all-aqueous systems. The rapid interfacial assembly of charged particles and polyelectrolytes can lock in nonequilibrium shapes of water, which also enables top-down technologies, such as 3D printing and microfluidics, to program flexible compartmentalized structures.


Subject(s)
Nanoparticles , Water , Microfluidics , Polyelectrolytes , Spheroids, Cellular
9.
Proc Natl Acad Sci U S A ; 117(15): 8360-8365, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32220955

ABSTRACT

Natural and man-made robotic systems use the interfacial tension between two fluids to support dense objects on liquid surfaces. Here, we show that coacervate-encased droplets of an aqueous polymer solution can be hung from the surface of a less dense aqueous polymer solution using surface tension. The forces acting on and the shapes of the hanging droplets can be controlled. Sacs with homogeneous and heterogeneous surfaces are hung from the surface and, by capillary forces, form well-ordered arrays. Locomotion and rotation can be achieved by embedding magnetic microparticles within the assemblies. Direct contact of the droplet with air enables in situ manipulation and compartmentalized cascading chemical reactions with selective transport. Applications including functional microreactors, motors, and biomimetic robots are evident.

10.
Langmuir ; 35(41): 13340-13350, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31536356

ABSTRACT

The effect of polymer surfactant structure and concentration on the self-assembly, mechanical properties, and solidification of nanoparticle surfactants (NPSs) at the oil-water interface was studied. The surface tension of the oil-water interface was found to depend strongly on the choice of the polymer surfactant used to assemble the NPSs, with polymer surfactants bearing multiple polar groups being the most effective at reducing interfacial tension and driving the NPS assembly. By contrast, only small variations in the shear modulus of the system were observed, suggesting that it is determined largely by particle density. In the presence of polymer surfactants bearing multiple functional groups, NPS assemblies on pendant drop surfaces were observed to spontaneously solidify above a critical polymer surfactant concentration. Interfacial solidification accelerated rapidly as polymer surfactant concentration was increased. On long timescales after solidification, pendant drop interfaces were observed to spontaneously wrinkle at sufficiently low surface tensions (approximately 5 mN m-1). Interfacial shear rheology of the NPS assemblies was elastic-dominated, with the shear modulus ranging from 0.1 to 1 N m-1, comparable to values obtained for nanoparticle monolayers elsewhere. Our work paves the way for the development of designer, multicomponent oil-water interfaces with well-defined mechanical, structural, and functional properties.

11.
Science ; 365(6450): 264-267, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31320536

ABSTRACT

Solid ferromagnetic materials are rigid in shape and cannot be reconfigured. Ferrofluids, although reconfigurable, are paramagnetic at room temperature and lose their magnetization when the applied magnetic field is removed. Here, we show a reversible paramagnetic-to-ferromagnetic transformation of ferrofluid droplets by the jamming of a monolayer of magnetic nanoparticles assembled at the water-oil interface. These ferromagnetic liquid droplets exhibit a finite coercivity and remanent magnetization. They can be easily reconfigured into different shapes while preserving the magnetic properties of solid ferromagnets with classic north-south dipole interactions. Their translational and rotational motions can be actuated remotely and precisely by an external magnetic field, inspiring studies on active matter, energy-dissipative assemblies, and programmable liquid constructs.

12.
Angew Chem Int Ed Engl ; 58(30): 10142-10147, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31099947

ABSTRACT

Amine-functionalized polyhedral oligomeric silsesquioxane (POSS), the smallest, monodisperse cage-shaped silica cubic nanoparticle, is exceptionally interfacially active and can form assemblies that jam the toluene/water interface, locking in non-equilibrium shapes of one liquid phase in another. The packing density of the amine-functionalized POSS assembly at the water/toluene interface can be tuned by varying the concentration, the pH value, and the degree of POSS functionalization. Functionalized POSS gives a higher interface coverage, and hence a lower interfacial tension, than nanoparticle surfactants formed by interactions between functionalized nanoparticles and polymeric ligands. Hydrogen-bonded POSS surfactants are more stable at the interface, offering some unique advantages for generating Pickering emulsions over typical micron-sized colloidal particles and ligand-stabilized nanoparticle surfactants.

13.
Adv Mater ; 31(18): e1806370, 2019 May.
Article in English | MEDLINE | ID: mdl-30828869

ABSTRACT

Liquid-fluid interfaces provide a platform both for structuring liquids into complex shapes and assembling dimensionally confined, functional nanomaterials. Historically, attention in this area has focused on simple emulsions and foams, in which surface-active materials such as surfactants or colloids stabilize structures against coalescence and alter the mechanical properties of the interface. In recent decades, however, a growing body of work has begun to demonstrate the full potential of the assembly of nanomaterials at liquid-fluid interfaces to generate functionally advanced, biomimetic systems. Here, a broad overview is given, from fundamentals to applications, of the use of liquid-fluid interfaces to generate complex, all-liquid devices with a myriad of potential applications.

14.
Nat Commun ; 10(1): 1095, 2019 03 06.
Article in English | MEDLINE | ID: mdl-30842556

ABSTRACT

Systems comprised of immiscible liquids held in non-equilibrium shapes by the interfacial assembly and jamming of nanoparticle-polymer surfactants have significant potential to advance catalysis, chemical separations, energy storage and conversion. Spatially directing functionality within them and coupling processes in both phases remains a challenge. Here, we exploit nanoclay-polymer surfactant assemblies at an oil-water interface to produce a semi-permeable membrane between the liquids, and from them all-liquid fluidic devices with bespoke properties. Flow channels are fabricated using micropatterned 2D substrates and liquid-in-liquid 3D printing. The anionic walls of the device can be functionalized with cationic small molecules, enzymes, and colloidal nanocrystal catalysts. Multi-step chemical transformations can be conducted within the channels under flow, as can selective mass transport across the liquid-liquid interface for in-line separations. These all-liquid systems become automated using pumps, detectors, and control systems, revealing a latent ability for chemical logic and learning.

15.
Adv Mater ; : e1803463, 2018 Jul 31.
Article in English | MEDLINE | ID: mdl-30066441

ABSTRACT

Harnessing the self-organization of soft materials to make complex, well-ordered surface patterns in a noninvasive manner is challenging. The wrinkling of thin films provides a compelling strategy to achieve this. Despite much attention, however, a simple, single-step, reversible method that gives rise to controlled, two-dimensional (2D) ordered, continuous, and discontinuous patterns has proven to be elusive. Here a novel, robust method is described to achieve this using an ultraviolet-light-sensitive anthracene-containing polymer thin film. The origin of the patterns is the local buckling of the thin film, where the control over the topology is given by laterally patterning out-of-plane gradients in the crosslink density of the film. The underlying buckling mechanics and formation of the surface features are well-described by finite element analysis. By illuminating the film with a photomask, local and long-range patterns that can be both continuous and discontinuous are able to be written. Furthermore, the patterning is fully reversible over multiple cycles. The results demonstrate a simple strategy for erasable storage of information in a surface topography that has applications in memory, anticounterfeiting, and plasmonics.

16.
Sci Adv ; 4(8): eaap8045, 2018 08.
Article in English | MEDLINE | ID: mdl-30083598

ABSTRACT

Mesostructured matter composed of colloidal nanocrystals in solidified architectures abounds with broadly tunable catalytic, magnetic, optoelectronic, and energy storing properties. Less common are liquid-like assemblies of colloidal nanocrystals in a condensed phase, which may have different energy transduction behaviors owing to their dynamic character. Limiting investigations into dynamic colloidal nanocrystal architectures is the lack of schemes to control or redirect the tendency of the system to solidify. We show how to solidify and subsequently reconfigure colloidal nanocrystal assemblies dimensionally confined to a liquid-liquid interface. Our success in this regard hinged on the development of competitive chemistries anchoring or releasing the nanocrystals to or from the interface. With these chemistries, it was possible to control the kinetic trajectory between quasi-two-dimensional jammed (solid-like) and unjammed (liquid-like) states. In future schemes, it may be possible to leverage this control to direct the formation or destruction of explicit physical pathways for energy carriers to migrate in the system in response to an external field.

17.
Nano Lett ; 18(4): 2525-2529, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29558625

ABSTRACT

Polyoxometalates (POMs) using {Mo72V30} as an example, dissolved in water, can interact with amine-terminated polydimethylsiloxane (PDMS-NH2) dissolved in toluene at the water/toluene interface to form POM-surfactants that significantly lower the interfacial tension and can be used to stabilize liquids via interfacial elasticity. The jamming of the POM-surfactants at the water/oil interface with consequent wrinkling occurs with a decrease in the interfacial area. The packing density of the POM-surfactants at the interface can be tuned by varying the strength of screening with the addition of cations with differing hydrated radii.

18.
Adv Mater ; 30(16): e1707603, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29573293

ABSTRACT

Liquids lack the spatial order required for advanced functionality. Interfacial assemblies of colloids, however, can be used to shape liquids into complex, 3D objects, simultaneously forming 2D layers with novel magnetic, plasmonic, or structural properties. Fully exploiting all-liquid systems that are structured by their interfaces would create a new class of biomimetic, reconfigurable, and responsive materials. Here, printed constructs of water in oil are presented. Both form and function are given to the system by the assembly and jamming of nanoparticle surfactants, formed from the interfacial interaction of nanoparticles and amphiphilic polymers that bear complementary functional groups. These yield dissipative constructs that exhibit a compartmentalized response to chemical cues. Potential applications include biphasic reaction vessels, liquid electronics, novel media for the encapsulation of cells and active matter, and dynamic constructs that both alter, and are altered by, their external environment.

19.
Adv Mater ; 30(9)2018 Mar.
Article in English | MEDLINE | ID: mdl-29334135

ABSTRACT

Using the interfacial jamming of cellulose nanocrystal (CNC) surfactants, a new concept, termed all-liquid molding, is introduced to produce all-liquid objects that retain the shape and details of the mold with high fidelity, yet remain all liquid and are responsive to external stimuli. This simple process, where the viscosity of the CNC dispersion can range from that of water to a crosslinked gel, opens tremendous opportunities for encapsulation, delivery systems, and unique microfluidic devices. The process described is generally applicable to any functionalized nanoparticles dispersed in one liquid and polymer ligands having complementary functionality dissolved in a second immiscible liquid. Such sculpted liquids retain all the characteristics of the liquids but retain shape indefinitely, very much like a solid, and provide a new platform for next-generation soft materials.

20.
Nat Nanotechnol ; 12(11): 1060-1063, 2017 11.
Article in English | MEDLINE | ID: mdl-28945242

ABSTRACT

Bicontinuous jammed emulsions (or bijels) are tortuous, interconnected structures of two immiscible liquids, kinetically trapped by colloidal particles that are irreversibly bound to the oil-water interface. A wealth of applications has been proposed for bijels in catalysis, energy storage and molecular encapsulation, but large domain sizes (on the order of 5 µm or larger) and difficulty in fabrication pose major barriers to their use. Here, we show that bijels with sub-micrometre domains can be formed via homogenization, rather than spinodal decomposition. We achieve this by using nanoparticle surfactants: polymers and nanoparticles of complementary functionality (for example, ion-pairing) that bind to one another at the oil-water interface. This allows the stabilization of the bijel far from the demixing point of the liquids, with interfacial tensions on the order of 20 mN m-1. Furthermore, our strategy is extremely versatile, as solvent, nanoparticle and ligand can all be varied.

SELECTION OF CITATIONS
SEARCH DETAIL
...