Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 186(20): 4365-4385.e27, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37774677

ABSTRACT

Alzheimer's disease (AD) is the most common cause of dementia worldwide, but the molecular and cellular mechanisms underlying cognitive impairment remain poorly understood. To address this, we generated a single-cell transcriptomic atlas of the aged human prefrontal cortex covering 2.3 million cells from postmortem human brain samples of 427 individuals with varying degrees of AD pathology and cognitive impairment. Our analyses identified AD-pathology-associated alterations shared between excitatory neuron subtypes, revealed a coordinated increase of the cohesin complex and DNA damage response factors in excitatory neurons and in oligodendrocytes, and uncovered genes and pathways associated with high cognitive function, dementia, and resilience to AD pathology. Furthermore, we identified selectively vulnerable somatostatin inhibitory neuron subtypes depleted in AD, discovered two distinct groups of inhibitory neurons that were more abundant in individuals with preserved high cognitive function late in life, and uncovered a link between inhibitory neurons and resilience to AD pathology.


Subject(s)
Alzheimer Disease , Brain , Aged , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Cognition , Cognitive Dysfunction/metabolism , Neurons/metabolism
3.
medRxiv ; 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34611666

ABSTRACT

BACKGROUND: Following emergency use authorization in December 2020, the Coronavirus Efficacy (COVE) trial was amended to an open-label phase, where participants were unblinded and those randomized to placebo were offered vaccination. Emergence of the delta variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with increased incidences of coronavirus disease 2019 (Covid-19) among unvaccinated and vaccinated persons. This exploratory analysis evaluated the incidence and genetic sequences of Covid-19 cases in the ongoing COVE trial during the open-label phase, with a focus on July-August 2021, when delta-variants surged in the US. METHODS: Covid-19 cases were identified in participants initially randomized to mRNA-1273 (vaccinated from July-December 2020) and those initially randomized to the placebo (vaccinated December 2020-April 2021) who received at least one dose and were SARS-CoV-2-negative at baseline in the modified-intent-to-treat population were analyzed. Included were Covid-19 cases occurring after 26-Mar-2021 with positive RT-PCR results in nasopharyngeal samples (central lab test) and reported Covid-19 symptoms. Genetic sequencing of Covid-19 cases was also performed. RESULTS: There were 14,746 participants in the earlier mRNA-1273 (mRNA-1273e) group and 11,431 in the later placebo-mRNA1273 (mRNA-1273p) group. Covid-19 cases increased from the start of the open-label phase to July-August 2021. During July and August, 162 Covid-19 cases occurred in the mRNA-1273e group and 88 in the mRNA-1273p group. Of the cases sequenced, 144/149 [97%]) in the mRNA-1273 and 86/88 (99%) in the mRNA-1273p groups were attributed to delta. The incidence rate of Covid-19 was lower for the mRNA-1273p (49.0/1000 person-years) versus mRNA-1273e (77.1/1000 person-years) group [36.4% (95% CI 17.1%-51.5%) reduction]. There were fewer severe Covid-19 cases in the mRNA-1273p (6; 6.2/1000 person-years) than mRNA-1273e (13; 3.3/1000 person-years) [46.0% (95% CI -52.4%-83.2%) reduction]. Three Covid-19 related hospitalizations occurred with two resulting deaths in the mRNA-1273e group. CONCLUSION: Incidence rates of Covid-19 and severe Covid-19 were lower during the months when delta was the dominant variant (July/August 2021) among COVE participants vaccinated more recently. Analysis of COVID-19 cases from the open-label phase of the COVE study is ongoing.

4.
Biomedicines ; 8(10)2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33096681

ABSTRACT

A hexanucleotide repeat expansion within the C9orf72 gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and its discovery has revolutionized our understanding of this devastating disease. Model systems are a valuable tool for studying ALS pathobiology and potential therapies. The zebrafish (Danio rerio) has particularly become a useful model organism to study neurological diseases, including ALS, due to high genetic and physiological homology to mammals, and sensitivity to various genetic and pharmacological manipulations. In this review we summarize the zebrafish models that have been used to study the pathology of C9orf72-related ALS. We discuss their value in providing mechanistic insights and their potential use for drug discovery.

SELECTION OF CITATIONS
SEARCH DETAIL